1
|
Yellon DM and Hausenloy DJ: Realizing the
clinical potential of ischemic preconditioning and
postconditioning. Nat Clin Pract Cardiovasc Med. 2:568–575. 2005.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Yellon DM and Hausenloy DJ: Myocardial
reperfusion injury. New Eng J Med. 357:1121–1135. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hausenloy DJ and Yellon DM: Targeting
myocardial reperfusion injury-the search continues. New Eng J Med.
373:1073–1075. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ong SB, Samangouei P, Kalkhoran SB and
Hausenloy DJ: The mitochondrial permeability transition pore and
its role in myocardial ischemia reperfusion injury. J Mol Cell
Cardiol. 78:23–34. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hausenloya DJ, Duchenb MR and Yellon DM:
Inhibiting mitochondrial permeability transition pore opening at
reperfusion protects against ischaemia-reperfusion injury.
Cardiovasc Res. 60:617–625. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pagliaro P, Moro F, Tullio F, Perrelli MG
and Penna C: Cardioprotective pathways during reperfusion: Focus on
redox signaling and other modalities of cell signaling. Antioxid
Redox Signal. 14:833–850. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhao GL, Yu LM, Gao WL, Duan WX, Jiang B,
Liu XD, Zhang B, Liu ZH, Zhai ME, Jin ZX, et al: Berberine protects
rat heart from ischemia/reperfusion injury via activating
JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress.
Acta Pharmacol Sin. 37:354–367. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li Q, Shen L, Wang Z, Jiang HP and Liu LX:
Tanshinone IIA protects against myocardial ischemia reperfusion
injury by activating the PI3K/Akt/mTOR signaling pathway. Biomed
Pharmacother. 84:106–114. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gao Y, Jia P, Shu W and Jia D: The
protective effect of lycopene on hypoxia/reoxygenation-induced
endoplasmic reticulum stress in H9C2 cardiomyocytes. Eur J
Pharmacol. 774:71–79. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
de Sousa LM, de Carvalho JL, da Silva HC,
Lemos TL, Arriaga AM, Braz-Filho R, Militão GC, Silva TD, Ribeiro
PR and Santiago GM: New cytotoxic bibenzyl and other constituents
from Bauhinia ungulata L. (Fabaceae). Chem Biodivers.
13:1630–1635. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Milella L, Milazzo S, De Leo M, Vera
Saltos MB, Faraone I, Tuccinardi T, Lapillo M, De Tommasi N and
Braca A: α-Glucosidase and α-amylase inhibitors from
arcytophyllum thymifolium. J Nat Prod. 79:2104–2112. 2016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhong JD, Feng Y, Li HM, Xia XS and Li RT:
A new flavonoid glycoside from Elsholtzia bodinieri. Nat
Prod Res. 30:2278–2284. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zeng B, Chen K, Du P, Wang SS, Ren B, Ren
YL, Yan HS, Liang Y and Wu FH: Phenolic compounds from
Clinopodium chinense (Benth.) O. Kuntze and their inhibitory
effects on α-Glucosidase and vascular endothelial cells injury.
Chem Biodivers. 13:596–601. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lou H, Jing X, Ren D, Wei X and Zhang X:
Eriodictyol protects against H2O2-induced
neuron-like PC12 cell death through activation of Nrf2/ARE
signaling pathway. Neurochem Int. 61:251–257. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jing X, Shi H, Zhu X, Wei X, Ren M, Han M,
Ren D and Lou H: Eriodictyol attenuates β-amyloid 25-35
peptide-induced oxidative cell death in primary cultured neurons by
activation of Nrf2. Neurochem Res. 40:1463–1471. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ferreira Ede O, Fernandes MY, Lima NM,
Neves KR, Carmo MR, Lima FA, Fonteles AA, Menezes AP and Andrade
GM: Neuroinflammatory response to experimental stroke is inhibited
by eriodictyol. Behav Brain Res. 312:321–332. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li CZ, Jin HH, Sun HX, Zhang ZZ, Zheng JX,
Li SH and Han SH: Eriodictyol attenuates cisplatin-induced kidney
injury by inhibiting oxidative stress and inflammation. Eur J
Pharmacol. 772:124–130. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhu GF, Guo HJ, Huang Y, Wu CT and Zhang
XF: Eriodictyol, a plant flavonoid, attenuates LPS-induced acute
lung injury through its antioxidative and anti-inflammatory
activity. Exp Ther Med. 10:2259–2266. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lee JK: Anti-inflammatory effects of
eriodictyol in lipopolysaccharide-stimulated Raw 264.7 murine
macrophages. Arch Pharm Res. 34:671–679. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rossato MF, Trevisan G, Walker CI, Klafke
JZ, de Oliveira AP, Villarinho JG, Zanon RB, Royes LF, Athayde ML,
Gomez MV and Ferreira J: Eriodictyol: A flavonoid antagonist of the
TRPV1 receptor with antioxidant activity. Biochem Pharmacol.
81:544–551. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Habtemariam S and Dagne E: Comparative
antioxidant, prooxidant and cytotoxic activity of sigmoidin A and
eriodictyol. Planta Med. 76:589–594. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Walker J, Reichelt KV, Obst K, Widder S,
Hans J, Krammer GE, Ley JP and Somoza V: Identification of an
anti-inflammatory potential of Eriodictyon angustifolium compounds
in human gingival fibroblasts. Food Funct. 7:3046–3055. 2016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Ferreira PS, Spolidorio LC, Manthey JA and
Cesar TB: Citrus flavanones prevent systemic inflammation and
ameliorate oxidative stress in C57BL/6J mice fed high-fat diet.
Food Funct. 7:2675–2681. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen C, He H, Luo Y, Zhou M, Yin D and He
M: Involvement of Bcl-2 signal pathway in the protective effects of
apigenin on anoxia/reoxygenation-induced myocardium injury. J
Cardiovasc Pharmacol. 67:152–163. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ji HJ, Wang DM, Hu JF, Sun MN, Li G, Li
ZP, Wu DH, Liu G and Chen NH: IMM-H004, a novel courmarin
derivative, protects against oxygen-and
glucose-deprivation/restoration-induced apoptosis in PC12 cells.
Eur J Pharmacol. 723:259–266. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang M, Sun GB, Zhang JY, Luo Y, Yu YL, Xu
XD, Meng XB, Zhang MD, Lin WB and Sun XB: Elatoside C protects the
heart from ischaemia/reperfusion injury through the modulation of
oxidative stress and intracellular Ca2+ homeostasis. Int
J Cardiol. 185:167–176. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li JZ, Yu SY, Wu JH, Shao QR and Dong XM:
Paeoniflorin protects myocardial cell from doxorubicin-induced
apoptosis through inhibition of NADPH oxidase. Can J Physiol
Pharmacol. 90:1569–1575. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shalini S, Dorstyn L, Dawar S and Kumar S:
Old, new and emerging functions of caspases. Cell Death Differ.
22:526–539. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ding H, Han R, Chen X, Fang W, Liu M, Wang
X, Wei Q, Kodithuwakku ND and Li Y: Clematichinenoside (AR)
attenuates hypoxia/reoxygenation-induced H9c2 cardiomyocyte
apoptosis via a mitochondria-mediated signaling pathway. Molecules.
21(pii): E6832016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Madungwe NB, Zilberstein NF, Feng Y and
Bopassa JC: Critical role of mitochondrial ROS is dependent on
their site of production on the electron transport chain in
ischemic heart. Am J Cardiovasc Dis. 6:93–108. 2016.PubMed/NCBI
|
31
|
Hurst S, Hoek J and Sheu SS: Mitochondrial
Ca2+ and regulation of the permeability transition pore.
J Bioenerg Biomembr. 49:27–47. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Weiss JN, Korge P, Honda HM and Ping P:
Role of the mitochondrial permeability transition in myocardial
disease. Circ Res. 93:292–301. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Marchetti P, Castedo M, Susin SA, Zamzami
N, Hirsch T, Macho A, Haeffner A, Hirsch F, Geuskens M and Kroemer
G: Mitochondrial permeability transition is a central coordinating
event of apoptosis. J Exp Med. 184:1155–1160. 1996. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kroemer G: Mitochondrial control of
apoptosis: An overview. Biochem Soc Symp. 66:1–15. 1999. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li YY, Xiao L, Qiu LY, Yan YF, Wang H,
Duan GL, Liao ZP and Chen HP: Sasanquasaponin-induced
cardioprotection involves inhibition of mPTP opening via
attenuating intracellular chloride accumulation. Fitoterapia.
116:1–9. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Whelan RS, Kaplinskiy V and Kitsis RN:
Cell death in the pathogenesis of heart disease: Mechanisms and
significance. Annu Rev Physiol. 72:19–44. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Budihardjo I, Oliver H, Lutter M, Luo X
and Wang X: Biochemical pathways of caspase activation during
apoptosis. Annu Rev Cell Dev Biol. 15:269–290. 1999. View Article : Google Scholar : PubMed/NCBI
|
38
|
Uchiyama T, Otani H, Okada T, Ninomiya H,
Kido M, Imamura H, Nogi S and Kobayashi Y: Nitric oxide induces
caspase-dependent apoptosis and necrosis in neonatal rat
cardiomyocytes. J Mol Cell Cardiol. 34:1049–1061. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Youle RJ and Strasser A: The Bcl-2 protein
family: Opposing activities that mediate cell death. Nat Rev Mol
Cell Biol. 9:47–59. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yan Y, Wei CL, Zhang WR, Cheng HP and Liu
J: Cross-talk between calcium and reactive oxygen species
signaling. Acta Pharmacol Sin. 27:821–826. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Görlach A, Bertram K, Hudecova S and
Krizanova O: Calcium and ROS: A mutual interplay. Redox Biol.
6:260–271. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Jašová M, Kancirová I, Waczulíková I and
Ferko M: Mitochondria as a target of cardioprotection in models of
preconditioning. J Bioenerg Biomembr. 49:357–368. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jing X, Ren D, Wei X, Shi H, Zhang X,
Perez RG and Lou H and Lou H: Toxicol Appl Pharmacol. 273:672–679.
2013. View Article : Google Scholar : PubMed/NCBI
|