1
|
Goldring MB and Goldring SR: Articular
cartilage and subchondral bone in the pathogenesis of
osteoarthritis. Ann N Y Acad Sci. 1192:230–237. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Reynard LN and Loughlin J: Insights from
human genetic studies into the pathways involved in osteoarthritis.
Nat Rev Rheumatol. 9:573–583. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Blagojevic M, Jinks C, Jeffery A and
Jordan KP: Risk factors for onset of osteoarthritis of the knee in
older adults: A systematic review and meta-analysis. Osteoarthritis
Cartilage. 18:24–33. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Qi Y, Feng G and Yan W: Mesenchymal stem
cell-based treatment for cartilage defects in osteoarthritis. Mol
Biol Rep. 39:5683–5689. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Guermazi A, Niu J, Hayashi D, Roemer FW,
Englund M, Neogi T, Aliabadi P, McLennan CE and Felson DT:
Prevalence of abnormalities in knees detected by MRI in adults
without knee osteoarthritis: Population based observational study
(Framingham Osteoarthritis Study). BMJ. 29:e53392012. View Article : Google Scholar
|
6
|
Kao YJ, Ho J and Allen CR: Evaluation and
management of osteochondral lesions of the knee. Phys Sportsmed.
39:60–69. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Longo UG, Petrillo S, Franceschetti E,
Berton A, Maffulli N and Denaro V: Stem cells and gene therapy for
cartilage repair. Stem Cells Int. 2012:1683852012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sampson S, Botto-van Bemden A and Aufiero
D: Stem cell therapies for treatment of cartilage and bone
disorders: Osteoarthritis, avascular necrosis, and non-union
fractures. PM R. 7 Suppl 4:S26–S32. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Houdek MT, Wyles CC, Martin JR and Sierra
RJ: Stem cell treatment for avascular necrosis of the femoral head:
Current perspectives. Stem Cells Cloning. 7:65–70. 2014.PubMed/NCBI
|
10
|
Wei ZJ, Liu J and Qin J: miR-138
suppressed the progression of osteoarthritis mainly through
targeting p65. Eur Rev Med Pharmacol Sci. 21:2177–2184.
2017.PubMed/NCBI
|
11
|
Le LT, Swingler TE, Crowe N, Vincent TL,
Barter MJ, Donell ST, Delany AM, Dalmay T, Young DA and Clark IM:
The microRNA-29 family in cartilage homeostasis and osteoarthritis.
J Mol Med (Berl). 94:583–596. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Han J, Yang T, Gao J, Wu J, Qiu X, Fan Q
and Ma B: Specific microRNA expression during chondrogenesis of
human mesenchymal stem cells. Int J Mol Med. 25:377–384.
2010.PubMed/NCBI
|
14
|
Lahiji A, Sohrabi A, Hungerford DS and
Frondoza CG: Chitosan supports the expression of extracellular
matrix proteins in human osteoblasts and chondrocytes. J Biomed
Mater Res. 51:586–595. 2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cucchiarini M, de Girolamo L, Filardo G,
Oliveira JM, Orth P, Pape D and Reboul P: Basic science of
osteoarthritis. J Exp Orthop. 3:222016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kawaguchi H: Regulation of osteoarthritis
development by Wnt-beta-catenin signaling through the endochondral
ossification process. J Bone Miner Res. 24:8–11. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Guérit D, Philipot D, Chuchana P, Toupet
K, Brondello JM, Mathieu M, Jorgensen C and Noël D: Sox9-regulated
miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal
stem cells. PLoS One. 8:e625822013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cairns DM, Liu R, Sen M, Canner JP,
Schindeler A, Little DG and Zeng L: Interplay of Nkx3.2, Sox9 and
Pax3 regulates chondrogenic differentiation of muscle progenitor
cells. PLoS One. 7:e396422012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cao L, Yang F, Liu G, Yu D, Li H, Fan Q,
Gan Y, Tang T and Dai K: The promotion of cartilage defect repair
using adenovirus mediated Sox9 gene transfer of rabbit bone marrow
mesenchymal stem cells. Biomaterials. 32:3910–3920. 2011.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Cucchiarini M, Orth P and Madry H: Direct
rAAV SOX9 administration for durable articular cartilage repair
with delayed terminal differentiation and hypertrophy in vivo. J
Mol Med (Berl). 91:625–636. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hargus G, Kist R, Kramer J, Gerstel D,
Neitz A, Scherer G and Rohwedel J: Loss of Sox9 function results in
defective chondrocyte differentiation of mouse embryonic stem cells
in vitro. Int J Dev Biol. 52:323–332. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
de Crombrugghe B, Lefebvre V, Behringer
RR, Bi W, Murakami S and Huang W: Transcriptional mechanisms of
chondrocyte differentiation. Matrix Biol. 19:389–394. 2000.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Ito Y and Miyazono K: RUNX transcription
factors as key targets of TGF-beta superfamily signaling. Curr Opin
Genet Dev. 13:43–47. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Marie PJ: Transcription factors
controlling osteoblastogenesis. Arch Biochem Biophys. 473:98–105.
2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shen Q and Christakos S: The vitamin D
receptor, Runx2, and the Notch signaling pathway cooperate in the
transcriptional regulation of osteopontin. J Biol Chem.
280:40589–40598. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hassan MQ, Tare RS, Lee SH, Mandeville M,
Morasso MI, Javed A, van Wijnen AJ, Stein JL, Stein GS and Lian JB:
BMP2 commitment to the osteogenic lineage involves activation of
Runx2 by DLX3 and a homeodomain transcriptional network. J Biol
Chem. 281:40515–40526. 2006. View Article : Google Scholar : PubMed/NCBI
|