Normal‑tension glaucoma: Pathogenesis and genetics (Review)
- Authors:
- Alexandra Trivli
- Ioannis Koliarakis
- Chryssa Terzidou
- George N. Goulielmos
- Charalambos S. Siganos
- Demetrios A. Spandidos
- Georgios Dalianis
- Efstathios T. Detorakis
-
Affiliations: Department of Ophthalmology, Konstantopouleio‑Patission General Hospital, 14233 Athens, Greece, Laboratory of Anatomy‑Histology‑Embryology, Medical School, University of Crete, 71003 Heraklion, Greece, Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece, Department of Ophthalmology, University Hospital of Heraklion, 71110 Heraklion, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece - Published online on: November 26, 2018 https://doi.org/10.3892/etm.2018.7011
- Pages: 563-574
-
Copyright: © Trivli et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lee BL, Bathija R and Weinreb RN: The definition of normal-tension glaucoma. J Glaucoma. 7:366–371. 1998. View Article : Google Scholar : PubMed/NCBI | |
Cho HK and Kee C: Population-based glaucoma prevalence studies in Asians. Surv Ophthalmol. 59:434–447. 2014. View Article : Google Scholar : PubMed/NCBI | |
Budak Y and Akdogan M: Retinal ganglion cell death. Glaucoma-Basic and Clinical Concepts. Rumelt S: InTech; Rijeka: pp. 33–56. 2011, https://www.intechopen.com/books/glaucoma-basic-and-clinical-concepts/retinal-ganglion-cell-death | |
Drance S, Anderson DR and Schulzer M: Collaborative Normal-Tension Glaucoma Study Group: Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 131:699–708. 2001. View Article : Google Scholar : PubMed/NCBI | |
Flammer J, Orgül S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP and Stefánsson E: The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 21:359–393. 2002. View Article : Google Scholar : PubMed/NCBI | |
Grunwald JE, Piltz J, Hariprasad SM and DuPont J: Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci. 39:2329–2336. 1998.PubMed/NCBI | |
Quaranta L and Floriani I: The rate of progression and ocular perfusion pressure in the Low-pressure Glaucoma Treatment Study. Am J Ophthalmol. 152:880–881; author reply 880-881. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sung KR, Cho JW, Lee S, Yun SC, Choi J, Na JH, Lee Y and Kook MS: Characteristics of visual field progression in medically treated normal-tension glaucoma patients with unstable ocular perfusion pressure. Invest Ophthalmol Vis Sci. 52:737–743. 2011. View Article : Google Scholar : PubMed/NCBI | |
Choi J, Kim KH, Jeong J, Cho HS, Lee CH and Kook MS: Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma. Invest Ophthalmol Vis Sci. 48:104–111. 2007. View Article : Google Scholar : PubMed/NCBI | |
Okumura Y, Yuki K and Tsubota K: Low diastolic blood pressure is associated with the progression of normal-tension glaucoma. Ophthalmologica. 228:36–41. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gasser P and Flammer J: Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma. Am J Ophthalmol. 111:585–588. 1991. View Article : Google Scholar : PubMed/NCBI | |
Flammer J: The vascular concept of glaucoma. Surv Ophthalmol. 38 Suppl:S3–S6. 1994. View Article : Google Scholar : PubMed/NCBI | |
Flammer J and Mozaffarieh M: Autoregulation, a balancing act between supply and demand. Can J Ophthalmol. 43:317–321. 2008. View Article : Google Scholar : PubMed/NCBI | |
Abegão Pinto L, Vandewalle E and Stalmans I: Disturbed correlation between arterial resistance and pulsatility in glaucoma patients. Acta Ophthalmol. 90:e214–e220. 2012. View Article : Google Scholar : PubMed/NCBI | |
Galassi F, Sodi A, Ucci F, Renieri G, Pieri B and Baccini M: Ocular hemodynamics and glaucoma prognosis: A color Doppler imaging study. Arch Ophthalmol. 121:1711–1715. 2003. View Article : Google Scholar : PubMed/NCBI | |
Emre M, Orgül S, Gugleta K and Flammer J: Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br J Ophthalmol. 88:662–666. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pache M, Kaiser HJ, Akhalbedashvili N, Lienert C, Dubler B, Kappos L and Flammer J: Extraocular blood flow and endothelin-1 plasma levels in patients with multiple sclerosis. Eur Neurol. 49:164–168. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chauhan BC, LeVatte TL, Jollimore CA, Yu PK, Reitsamer HA, Kelly ME, Yu DY, Tremblay F and Archibald ML: Model of endothelin-1-induced chronic optic neuropathy in rat. Invest Ophthalmol Vis Sci. 45:144–152. 2004. View Article : Google Scholar : PubMed/NCBI | |
Flammer J and Mozaffarieh M: What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv Ophthalmol. 52 (Suppl 2):S162–S173. 2007. View Article : Google Scholar : PubMed/NCBI | |
Furlanetto RL, De Moraes CG, Teng CC, Liebmann JM, Greenfield DS, Gardiner SK, Ritch R and Krupin T: Low-Pressure Glaucoma Treatment Study Group: Risk factors for optic disc hemorrhage in the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol. 157:945–952. 2014. View Article : Google Scholar : PubMed/NCBI | |
Orgül S, Kaiser HJ, Flammer J and Gasser P: Systemic blood pressure and capillary blood-cell velocity in glaucoma patients: A preliminary study. Eur J Ophthalmol. 5:88–91. 1995. View Article : Google Scholar : PubMed/NCBI | |
Moore D, Harris A, Wudunn D, Kheradiya N and Siesky B: Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma? Clin Ophthalmol. 2:849–861. 2008.PubMed/NCBI | |
Charlson ME, de Moraes CG, Link A, Wells MT, Harmon G, Peterson JC, Ritch R and Liebmann JM: Nocturnal systemic hypotension increases the risk of glaucoma progression. Ophthalmology. 121:2004–2012. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bowe A, Grünig M, Schubert J, Demir M, Hoffmann V, Kütting F, Pelc A and Steffen HM: Circadian variation in arterial blood pressure and glaucomatous optic neuropathy - a systematic review and meta-analysis. Am J Hypertens. 28:1077–1082. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Choi J, Jeong D, Kim S and Kook MS: Relationship between daytime variability of blood pressure or ocular perfusion pressure and glaucomatous visual field progression. Am J Ophthalmol. 160:522–537.e1. 2015. View Article : Google Scholar : PubMed/NCBI | |
Flammer J, Konieczka K and Flammer AJ: The primary vascular dysregulation syndrome: Implications for eye diseases. EPMA J. 4:142013. View Article : Google Scholar : PubMed/NCBI | |
Konieczka K, Ritch R, Traverso CE, Kim DM, Kook MS, Gallino A, Golubnitschaja O, Erb C, Reitsamer HA, Kida T, et al: Flammer syndrome. EPMA J. 5:112014. View Article : Google Scholar : PubMed/NCBI | |
Cursiefen C, Wisse M, Cursiefen S, Jünemann A, Martus P and Korth M: Migraine and tension headache in high-pressure and normal-pressure glaucoma. Am J Ophthalmol. 129:102–104. 2000. View Article : Google Scholar : PubMed/NCBI | |
Buckley C, Hadoke PW, Henry E and O'Brien C: Systemic vascular endothelial cell dysfunction in normal pressure glaucoma. Br J Ophthalmol. 86:227–232. 2002. View Article : Google Scholar : PubMed/NCBI | |
Teuchner B, Orgül S, Ulmer H, Haufschild T and Flammer J: Reduced thirst in patients with a vasospastic syndrome. Acta Ophthalmol Scand. 82:738–740. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gherghel D, Orgül S, Gugleta K and Flammer J: Retrobulbar blood flow in glaucoma patients with nocturnal over-dipping in systemic blood pressure. Am J Ophthalmol. 132:641–647. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wunderlich K, Zimmerman C, Gutmann H, Teuchner B, Flammer J and Drewe J: Vasospastic persons exhibit differential expression of ABC-transport proteins. Mol Vis. 9:756–761. 2003.PubMed/NCBI | |
Pache M, Kräuchi K, Cajochen C, Wirz-Justice A, Dubler B, Flammer J and Kaiser HJ: Cold feet and prolonged sleep-onset latency in vasospastic syndrome. Lancet. 358:125–126. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mozaffarieh M, Osusky R, Schotzau A and Flammer J: Relationship between optic nerve head and finger blood flow. Eur J Ophthalmol. 20:136–141. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mozaffarieh M and Flammer J: New insights in the pathogenesis and treatment of normal tension glaucoma. Curr Opin Pharmacol. 13:43–49. 2013. View Article : Google Scholar : PubMed/NCBI | |
Flammer J: Glaucomatous optic neuropathy: A reperfusion injury. Klin Monbl Augenheilkd. 218:290–291. 2001.(In German). View Article : Google Scholar : PubMed/NCBI | |
Gugleta K, Zawinka C, Rickenbacher I, Kochkorov A, Katamay R, Flammer J and Orgul S: Analysis of retinal vasodilation after flicker light stimulation in relation to vasospastic propensity. Invest Ophthalmol Vis Sci. 47:4034–4041. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gugleta K, Orgül S, Hasler PW, Picornell T, Gherghel D and Flammer J: Choroidal vascular reaction to hand-grip stress in subjects with vasospasm and its relevance in glaucoma. Invest Ophthalmol Vis Sci. 44:1573–1580. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nitta K: Disc hemorrhage is a sign of progression in normal-tension glaucoma. J Glaucoma. 21:2762012.PubMed/NCBI | |
Corbett JJ, Phelps CD, Eslinger P and Montague PR: The neurologic evaluation of patients with low-tension glaucoma. Invest Ophthalmol Vis Sci. 26:1101–1104. 1985.PubMed/NCBI | |
Kruit MC, Launer LJ, Ferrari MD and van Buchem MA: Infarcts in the posterior circulation territory in migraine. The population-based MRI CAMERA study. Brain. 128:2068–2077. 2005. View Article : Google Scholar : PubMed/NCBI | |
Haefliger IO, Flammer J, Bény JL and Lüscher TF: Endothelium-dependent vasoactive modulation in the ophthalmic circulation. Prog Retin Eye Res. 20:209–225. 2001. View Article : Google Scholar : PubMed/NCBI | |
Toda N and Nakanishi-Toda M: Nitric oxide: Ocular blood flow, glaucoma, and diabetic retinopathy. Prog Retin Eye Res. 26:205–238. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sugiyama T, Moriya S, Oku H and Azuma I: Association of endothelin-1 with normal tension glaucoma: Clinical and fundamental studies. Surv Ophthalmol. 39 Suppl 1:S49–S56. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kaiser HJ, Flammer J, Wenk M and Lüscher T: Endothelin-1 plasma levels in normal-tension glaucoma: Abnormal response to postural changes. Graefes Arch Clin Exp Ophthalmol. 233:484–488. 1995. View Article : Google Scholar : PubMed/NCBI | |
Cellini M, Possati GL, Profazio V, Sbrocca M, Caramazza N and Caramazza R: Color Doppler imaging and plasma levels of endothelin-1 in low-tension glaucoma. Acta Ophthalmol Scand Suppl. 224:S22411–13. 1997. | |
Galassi F, Giambene B and Varriale R: Systemic vascular dysregulation and retrobulbar hemodynamics in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 52:4467–4471. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nicolela MT, Ferrier SN, Morrison CA, Archibald ML, LeVatte TL, Wallace K, Chauhan BC and LeBlanc RP: Effects of cold-induced vasospasm in glaucoma: The role of endothelin-1. Invest Ophthalmol Vis Sci. 44:2565–2572. 2003. View Article : Google Scholar : PubMed/NCBI | |
Su WW, Cheng ST, Hsu TS and Ho WJ: Abnormal flow-mediated vasodilation in normal-tension glaucoma using a noninvasive determination for peripheral endothelial dysfunction. Invest Ophthalmol Vis Sci. 47:3390–3394. 2006. View Article : Google Scholar : PubMed/NCBI | |
Henry E, Newby DE, Webb DJ, Hadoke PWF and O'Brien CJ: Altered endothelin-1 vasoreactivity in patients with untreated normal-pressure glaucoma. Invest Ophthalmol Vis Sci. 47:2528–2532. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hamed SA, Hamed EA, Ezz Eldin AM and Mahmoud NM: Vascular risk factors, endothelial function, and carotid thickness in patients with migraine: Relationship to atherosclerosis. J Stroke Cerebrovasc Dis. 19:92–103. 2010. View Article : Google Scholar : PubMed/NCBI | |
Collaborative Normal-Tension Glaucoma Study Group, . The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 126:498–505. 1998. View Article : Google Scholar : PubMed/NCBI | |
Agnifili L, Carpineto P, Fasanella V, Mastropasqua R, Zappacosta A, Di Staso S, Costagliola C and Mastropasqua L: Conjunctival findings in hyperbaric and low-tension glaucoma: An in vivo confocal microscopy study. Acta Ophthalmol. 90:e132–e137. 2012. View Article : Google Scholar : PubMed/NCBI | |
Agnifili L, Mastropasqua R, Frezzotti P, Fasanella V, Motolese I, Pedrotti E, Di Iorio A, Mattei PA, Motolese E and Mastropasqua L: Circadian intraocular pressure patterns in healthy subjects, primary open angle and normal tension glaucoma patients with a contact lens sensor. Acta Ophthalmol. 93:e14–e21. 2015. View Article : Google Scholar : PubMed/NCBI | |
De Moraes CG, Jasien JV, Simon-Zoula S, Liebmann JM and Ritch R: Visual field change and 24-hour IOP-related profile with a contact lens sensor in treated glaucoma patients. Ophthalmology. 123:744–753. 2016. View Article : Google Scholar : PubMed/NCBI | |
Choi J and Kook MS: Systemic and ocular hemodynamic risk factors in glaucoma. Biomed Res Int. 2015:1419052015. View Article : Google Scholar : PubMed/NCBI | |
Sakata R, Aihara M, Murata H, Saito H, Iwase A, Yasuda N and Araie M: Intraocular pressure change over a habitual 24-hour period after changing posture or drinking water and related factors in normal tension glaucoma. Invest Ophthalmol Vis Sci. 54:5313–5320. 2013. View Article : Google Scholar : PubMed/NCBI | |
Adlina AR, Alisa-Victoria K, Shatriah I, Liza-Sharmini AT and Ahmad MS: Optic disc topography in Malay patients with normal-tension glaucoma and primary open-angle glaucoma. Clin Ophthalmol. 8:2533–2539. 2014.PubMed/NCBI | |
Copt RP, Thomas R and Mermoud A: Corneal thickness in ocular hypertension, primary open-angle glaucoma, and normal tension glaucoma. Arch Ophthalmol. 117:14–16. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lee JW, Wong RL, Chan JC, Wong IY and Lai JS: Differences in corneal parameters between normal tension glaucoma and primary open-angle glaucoma. Int Ophthalmol. 35:67–72. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cao KY, Kapasi M, Betchkal JA and Birt CM: Relationship between central corneal thickness and progression of visual field loss in patients with open-angle glaucoma. Can J Ophthalmol. 47:155–158. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jonas JB, Wang N and Yang D: Translamina cribrosa pressure difference as potential element in the pathogenesis of glaucomatous optic neuropathy. Asia Pac J Ophthalmol (Phila). 5:5–10. 2016. View Article : Google Scholar : PubMed/NCBI | |
Burgoyne CF: A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res. 93:120–132. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wostyn P, De Groot V, Van Dam D, Audenaert K and De Deyn PP: Senescent changes in cerebrospinal fluid circulatory physiology and their role in the pathogenesis of normal-tension glaucoma. Am J Ophthalmol. 156:5–14.e2. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, Wang H, Li B, Zhang X and Wang N: Cerebrospinal fluid pressure in glaucoma: A prospective study. Ophthalmology. 117:259–266. 2010. View Article : Google Scholar : PubMed/NCBI | |
Siaudvytyte L, Januleviciene I, Daveckaite A, Ragauskas A, Bartusis L, Kucinoviene J, Siesky B and Harris A: Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma. Eye (Lond). 29:1242–1250. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pircher A, Remonda L, Weinreb RN and Killer HE: Translaminar pressure in Caucasian normal tension glaucoma patients. Acta Ophthalmol. 95:e524–e531. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lindén C, Qvarlander S, Jóhannesson G, Johansson E, Östlund F, Malm J and Eklund A: Normal-tension glaucoma has normal intracranial pressure: A prospective study ofintracranial pressure and intraocular pressure in different body positions. Ophthalmology. 125:361–368. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jonas JB, Gusek GC and Naumann GO: Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol. 226:587–590. 1988. View Article : Google Scholar : PubMed/NCBI | |
Rao VR, Krishnamoorthy RR and Yorio T: Endothelin-1, endothelin A and B receptor expression and their pharmacological properties in GFAP negative human lamina cribrosa cells. Exp Eye Res. 84:1115–1124. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rao VR, Krishnamoorthy RR and Yorio T: Endothelin-1 mediated regulation of extracellular matrix collagens in cells of human lamina cribrosa. Exp Eye Res. 86:886–894. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Rico C, Gutiérrez-Díaz E, Mencía-Gutiérrez E, Díaz-de-Atauri MJ and Blanco R: Obstructive sleep apnea-hypopnea syndrome (OSAHS) and glaucomatous optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 252:1345–1357. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin PW, Friedman M, Lin HC, Chang HW, Wilson M and Lin MC: Normal tension glaucoma in patients with obstructive sleep apnea/hypopnea syndrome. J Glaucoma. 20:553–558. 2011. View Article : Google Scholar : PubMed/NCBI | |
Karakucuk S, Goktas S, Aksu M, Erdogan N, Demirci S, Oner A, Arda H and Gumus K: Ocular blood flow in patients with obstructive sleep apnea syndrome (OSAS). Graefes Arch Clin Exp Ophthalmol. 246:129–134. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nadeem R, Molnar J, Madbouly EM, Nida M, Aggarwal S, Sajid H, Naseem J and Loomba R: Serum inflammatory markers in obstructive sleep apnea: A meta-analysis. J Clin Sleep Med. 9:1003–1012. 2013.PubMed/NCBI | |
Thurtell MJ, Bruce BB, Newman NJ and Biousse V: An update on idiopathic intracranial hypertension. Rev Neurol Dis. 7:e56–e68. 2010.PubMed/NCBI | |
Hara T, Hara T and Tsuru T: Increase of peak intraocular pressure during sleep in reproduced diurnal changes by posture. Arch Ophthalmol. 124:165–168. 2006. View Article : Google Scholar : PubMed/NCBI | |
Carvey PM, Hendey B and Monahan AJ: The blood-brain barrier in neurodegenerative disease: A rhetorical perspective. J Neurochem. 111:291–314. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pournaras CJ, Rungger-Brändle E, Riva CE, Hardarson SH and Stefansson E: Regulation of retinal blood flow in health and disease. Prog Retin Eye Res. 27:284–330. 2008. View Article : Google Scholar : PubMed/NCBI | |
Iadecola C and Nedergaard M: Glial regulation of the cerebral microvasculature. Nat Neurosci. 10:1369–1376. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cioffi GA and Sullivan P: The effect of chronic ischemia on the primate optic nerve. Eur J Ophthalmol. 9 Suppl 1:S34–S36. 1999. View Article : Google Scholar : PubMed/NCBI | |
Harris A, Siesky B and Wirostko B: Cerebral blood flow in glaucoma patients. J Glaucoma. 22 Suppl 5:S46–S48. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mozaffarieh M, Grieshaber MC and Flammer J: Oxygen and blood flow: Players in the pathogenesis of glaucoma. Mol Vis. 14:224–233. 2008.PubMed/NCBI | |
Bunting H, Still R, Williams DR, Gravenor M and Austin MW: Evaluation of plasma glutamate levels in normal tension glaucoma. Ophthalmic Res. 43:197–200. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chrysostomou V, Rezania F, Trounce IA and Crowston JG: Oxidative stress and mitochondrial dysfunction in glaucoma. Curr Opin Pharmacol. 13:12–15. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mozaffarieh M, Schoetzau A, Sauter M, Grieshaber M, Orgül S, Golubnitschaja O and Flammer J: Comet assay analysis of single-stranded DNA breaks in circulating leukocytes of glaucoma patients. Mol Vis. 14:1584–1588. 2008.PubMed/NCBI | |
Tezel G and Wax MB: Hypoxia-inducible factor 1alpha in the glaucomatous retina and optic nerve head. Arch Ophthalmol. 122:1348–1356. 2004. View Article : Google Scholar : PubMed/NCBI | |
McElnea EM, Quill B, Docherty NG, Irnaten M, Siah WF, Clark AF, O'Brien CJ and Wallace DM: Oxidative stress, mitochondrial dysfunction and calcium overload in human lamina cribrosa cells from glaucoma donors. Mol Vis. 17:1182–1191. 2011.PubMed/NCBI | |
Yuan L and Neufeld AH: Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res. 64:523–532. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tezel G and Wax MB: The immune system and glaucoma. Curr Opin Ophthalmol. 15:80–84. 2004. View Article : Google Scholar : PubMed/NCBI | |
Prasanna G, Krishnamoorthy R and Yorio T: Endothelin, astrocytes and glaucoma. Exp Eye Res. 93:170–177. 2011. View Article : Google Scholar : PubMed/NCBI | |
Harada T, Harada C, Nakamura K, Quah HM, Okumura A, Namekata K, Saeki T, Aihara M, Yoshida H, Mitani A, et al: The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest. 117:1763–1770. 2007. View Article : Google Scholar : PubMed/NCBI | |
Munemasa Y and Kitaoka Y: Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection. Front Cell Neurosci. 6:602013. View Article : Google Scholar : PubMed/NCBI | |
Lebrun-Julien F, Duplan L, Pernet V, Osswald I, Sapieha P, Bourgeois P, Dickson K, Bowie D, Barker PA and Di Polo A: Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J Neurosci. 29:5536–5545. 2009. View Article : Google Scholar : PubMed/NCBI | |
Oku H, Fukuhara M, Komori A, Okuno T, Sugiyama T and Ikeda T: Endothelin-1 (ET-1) causes death of retinal neurons through activation of nitric oxide synthase (NOS) and production of superoxide anion. Exp Eye Res. 86:118–130. 2008. View Article : Google Scholar : PubMed/NCBI | |
Golubnitschaja O, Yeghiazaryan K, Liu R, Mönkemann H, Leppert D, Schild H, Haefliger IO and Flammer J: Increased expression of matrix metalloproteinases in mononuclear blood cells of normal-tension glaucoma patients. J Glaucoma. 13:66–72. 2004. View Article : Google Scholar : PubMed/NCBI | |
Grieshaber MC and Flammer J: Does the blood-brain barrier play a role in Glaucoma? Surv Ophthalmol. 52 Suppl 2:S115–S121. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hofman P, Hoyng P, vanderWerf F, Vrensen GF and Schlingemann RO: Lack of blood-brain barrier properties in microvessels of the prelaminar optic nerve head. Invest Ophthalmol Vis Sci. 42:895–901. 2001.PubMed/NCBI | |
Grieshaber MC, Terhorst T and Flammer J: The pathogenesis of optic disc splinter haemorrhages: A new hypothesis. Acta Ophthalmol Scand. 84:62–68. 2006. View Article : Google Scholar : PubMed/NCBI | |
Farrall AJ and Wardlaw JM: Blood-brain barrier: Ageing and microvascular disease - systematic review and meta-analysis. Neurobiol Aging. 30:337–352. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tong L, Balazs R, Soiampornkul R, Thangnipon W and Cotman CW: Interleukin-1 beta impairs brain derived neurotrophic factor-induced signal transduction. Neurobiol Aging. 29:1380–1393. 2008. View Article : Google Scholar : PubMed/NCBI | |
Allingham RR, Liu Y and Rhee DJ: The genetics of primary open-angle glaucoma: A review. Exp Eye Res. 88:837–844. 2009. View Article : Google Scholar : PubMed/NCBI | |
Weisschuh N, Neumann D, Wolf C, Wissinger B and Gramer E: Prevalence of myocilin and optineurin sequence variants in German normal tension glaucoma patients. Mol Vis. 11:284–287. 2005.PubMed/NCBI | |
Weisschuh N, Wolf C, Wissinger B and Gramer E: Variations in the WDR36 gene in German patients with normal tension glaucoma. Mol Vis. 13:724–729. 2007.PubMed/NCBI | |
Tang S, Toda Y, Kashiwagi K, Mabuchi F, Iijima H, Tsukahara S and Yamagata Z: The association between Japanese primary open-angle glaucoma and normal tension glaucoma patients and the optineurin gene. Hum Genet. 113:276–279. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liu YH and Tian T: Hypothesis of optineurin as a new common risk factor in normal-tension glaucoma and Alzheimer's disease. Med Hypotheses. 77:591–592. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mi XS, Yuan TF and So KF: The current research status of normal tension glaucoma. Clin Interv Aging. 9:1563–1571. 2014.PubMed/NCBI | |
Guo Y, Chen X, Zhang H, Li N, Yang X, Cheng W and Zhao K: Association of OPA1 polymorphisms with NTG and HTG: A meta-analysis. PLoS One. 7:e423872012. View Article : Google Scholar : PubMed/NCBI | |
Kawase K, Allingham RR, Meguro A, Mizuki N, Roos B, Solivan-Timpe FM, Robin AL, Ritch R and Fingert JH: Confirmation of TBK1 duplication in normal tension glaucoma. Exp Eye Res. 96:178–180. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Kim JY, Kim DM, Ko HS, Kim SY, Yoo T, Hwang SS and Park SS: Investigations on the association between normal tension glaucoma and single nucleotide polymorphisms of the endothelin-1 and endothelin receptor genes. Mol Vis. 12:1016–1021. 2006.PubMed/NCBI | |
Shibuya E, Meguro A, Ota M, Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T, Nakamura M, Negi A, et al: Association of Toll-like receptor 4 gene polymorphisms with normal tension glaucoma. Invest Ophthalmol Vis Sci. 49:4453–4457. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fraenkl SA, Golubnitschaja O, Yeghiazaryan K, Orgül S and Flammer J: Differences in gene expression in lymphocytes of patients with high-tension, PEX, and normal-tension glaucoma and in healthy subjects. Eur J Ophthalmol. 23:841–849. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jeoung JW, Seong MW, Park SS, Kim DM, Kim SH and Park KH: Mitochondrial DNA variant discovery in normal-tension glaucoma patients by next-generation sequencing. Invest Ophthalmol Vis Sci. 55:986–992. 2014. View Article : Google Scholar : PubMed/NCBI | |
Akiyama M, Yatsu K, Ota M, Katsuyama Y, Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T, Nakamura M, et al: Microsatellite analysis of the GLC1B locus on chromosome 2 points to NCK2 as a new candidate gene for normal tension glaucoma. Br J Ophthalmol. 92:1293–1296. 2008. View Article : Google Scholar : PubMed/NCBI | |
Murakami K, Meguro A, Ota M, Shiota T, Nomura N, Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T, et al: Analysis of microsatellite polymorphisms within the GLC1F locus in Japanese patients with normal tension glaucoma. Mol Vis. 16:462–466. 2010.PubMed/NCBI | |
Wolf C, Gramer E, Müller-Myhsok B, Pasutto F, Reinthal E, Wissinger B and Weisschuh N: Evaluation of nine candidate genes in patients with normal tension glaucoma: A case control study. BMC Med Genet. 10:912009. View Article : Google Scholar : PubMed/NCBI | |
Writing Committee for the Normal Tension Glaucoma Genetic Study Group of Japan Glaucoma Society, . Meguro A, Inoko H, Ota M, Mizuki N and Bahram S: Genome-wide association study of normal tension glaucoma: Common variants in SRBD1 and ELOVL5 contribute to disease susceptibility. Ophthalmology. 117:1331.e5–1338.e5. 2010. | |
Chi ZL, Akahori M, Obazawa M, Minami M, Noda T, Nakaya N, Tomarev S, Kawase K, Yamamoto T, Noda S, et al: Overexpression of optineurin E50K disrupts Rab8 interaction and leads to a progressive retinal degeneration in mice. Hum Mol Genet. 19:2606–2615. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chi ZL, Yasumoto F, Sergeev Y, Minami M, Obazawa M, Kimura I, Takada Y and Iwata T: Mutant WDR36 directly affects axon growth of retinal ganglion cells leading to progressive retinal degeneration in mice. Hum Mol Genet. 19:3806–3815. 2010. View Article : Google Scholar : PubMed/NCBI | |
Heiduschka P, Schnichels S, Fuhrmann N, Hofmeister S, Schraermeyer U, Wissinger B and Alavi MV: Electrophysiological and histologic assessment of retinal ganglion cell fate in a mouse model for OPA1-associated autosomal dominant optic atrophy. Invest Ophthalmol Vis Sci. 51:1424–1431. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mi XS, Zhang X, Feng Q, Lo AC, Chung SK and So KF: Progressive retinal degeneration in transgenic mice with overexpression of endothelin-1 in vascular endothelial cells. Invest Ophthalmol Vis Sci. 53:4842–4851. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gasparini L, Crowther RA, Martin KR, Berg N, Coleman M, Goedert M and Spillantini MG: Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: Effects on axonal viability. Neurobiol Aging. 32:419–433. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ning A, Cui J, To E, Ashe KH and Matsubara J: Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci. 49:5136–5143. 2008. View Article : Google Scholar : PubMed/NCBI | |
Harada C, Namekata K, Guo X, Yoshida H, Mitamura Y, Matsumoto Y, Tanaka K, Ichijo H and Harada T: ASK1 deficiency attenuates neural cell death in GLAST-deficient mice, a model of normal tension glaucoma. Cell Death Differ. 17:1751–1759. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ayub H, Khan MI, Micheal S, Akhtar F, Ajmal M, Shafique S, Ali SH, den Hollander AI, Ahmed A and Qamar R: Association of eNOS and HSP70 gene polymorphisms with glaucoma in Pakistani cohorts. Mol Vis. 16:18–25. 2010.PubMed/NCBI | |
Fernández-Martínez L, Letteboer S, Mardin CY, Weisschuh N, Gramer E, Weber BH, Rautenstrauss B, Ferreira PA, Kruse FE, Reis A, et al: Evidence for RPGRIP1 gene as risk factor for primary open angle glaucoma. Eur J Hum Genet. 19:445–451. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fingert JH, Robin AL, Stone JL, Roos BR, Davis LK, Scheetz TE, Bennett SR, Wassink TH, Kwon YH, Alward WL, et al: Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum Mol Genet. 20:2482–2494. 2011. View Article : Google Scholar : PubMed/NCBI | |
Janssen SF, Gorgels TG, van der Spek PJ, Jansonius NM and Bergen AA: In silico analysis of the molecular machinery underlying aqueous humor production: Potential implications for glaucoma. J Clin Bioinforma. 3:212013. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Malik MA, Goswami S, Sihota R and Kaur J: Candidate genes involved in the susceptibility of primary open angle glaucoma. Gene. 577:119–131. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lascaratos G, Garway-Heath DF, Willoughby CE, Chau KY and Schapira AH: Mitochondrial dysfunction in glaucoma: Understanding genetic influences. Mitochondrion. 12:202–212. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mabuchi F, Sakurada Y, Kashiwagi K, Yamagata Z, Iijima H and Tsukahara S: Association between genetic variants associated with vertical cup-to-disc ratio and phenotypic features of primary open-angle glaucoma. Ophthalmology. 119:1819–1825. 2012. View Article : Google Scholar : PubMed/NCBI | |
Monemi S, Spaeth G, DaSilva A, Popinchalk S, Ilitchev E, Liebmann J, Ritch R, Héon E, Crick RP, Child A, et al: Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet. 14:725–733. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nowak A, Majsterek I, Przybyłowska-Sygut K, Pytel D, Szymanek K, Szaflik J and Szaflik JP: Analysis of the expression and polymorphism of APOE, HSP, BDNF, and GRIN2B genes associated with the neurodegeneration process in the pathogenesis of primary open angle glaucoma. Biomed Res Int. 2015:2582812015. View Article : Google Scholar : PubMed/NCBI | |
Pasutto F, Keller KE, Weisschuh N, Sticht H, Samples JR, Yang YF, Zenkel M, Schlötzer-Schrehardt U, Mardin CY, Frezzotti P, et al: Variants in ASB10 are associated with open-angle glaucoma. Hum Mol Genet. 21:1336–1349. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rangachari K, Dhivya M, Eswari Pandaranayaka PJ, Prasanthi N, Sundaresan P, Krishnadas SR and Krishnaswamy S: Glaucoma database. Bioinformation. 5:398–399. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Héon E, Krupin T, Ritch R, Kreutzer D, et al: Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 295:1077–1079. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sahay P, Rao A, Padhy D, Sarangi S, Das G, Reddy MM and Modak R: Functional activity of matrix metalloproteinases 2 and 9 in tears of patients with glaucoma. Invest Ophthalmol Vis Sci. 58:BIO106–BIO113. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stoilova D, Child A, Trifan OC, Crick RP, Coakes RL and Sarfarazi M: Localization of a locus (GLC1B) for adult-onset primary open angle glaucoma to the 2cen-q13 region. Genomics. 36:142–150. 1996. View Article : Google Scholar : PubMed/NCBI | |
Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, Nishimura D, Clark AF, Nystuen A, Nichols BE, et al: Identification of a gene that causes primary open angle glaucoma. Science. 275:668–670. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wirtz MK, Samples JR, Rust K, Lie J, Nordling L, Schilling K, Acott TS and Kramer PL: GLC1F, a new primary open-angle glaucoma locus, maps to 7q35-q36. Arch Ophthalmol. 117:237–241. 1999. View Article : Google Scholar : PubMed/NCBI | |
Woo SJ, Kim JY, Kim DM, Park SS, Ko HS and Yoo T: Investigation of the association between 677C>T and 1298A>C 5,10-methylenetetra- hydrofolate reductase gene polymorphisms and normal-tension glaucoma. Eye (Lond). 23:17–24. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yu-Wai-Man P, Stewart JD, Hudson G, Andrews RM, Griffiths PG, Birch MK and Chinnery PF: OPA1 increases the risk of normal but not high tension glaucoma. J Med Genet. 47:120–125. 2010. View Article : Google Scholar : PubMed/NCBI |