Role of miR‑155 in immune regulation and its relevance in oral lichen planus (Review)
- Authors:
- Yan Tao
- Ruixue Ai
- Yilong Hao
- Lu Jiang
- Hongxia Dan
- Ning Ji
- Xin Zeng
- Yu Zhou
- Qianming Chen
-
Affiliations: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: November 27, 2018 https://doi.org/10.3892/etm.2018.7019
- Pages: 575-586
-
Copyright: © Tao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Alrashdan MS, Cirillo N and McCullough M: Oral lichen planus: A literature review and update. Arch Dermatol Rese. 308:539–551. 2016. View Article : Google Scholar | |
Sanketh DS, Patil S and Swetha B: Oral lichen planus and epithelial dysplasia with lichenoid features: A review and discussion with special reference to diagnosis. J Investig Clin Dent. 8:e122332017. View Article : Google Scholar | |
Gonzalez-Moles MA, Scully C and Gil-Montoya JA: Oral lichen planus: Controversies surrounding malignant transformation. Oral Dis. 14:229–243. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kurago ZB: Etiology and pathogenesis of oral lichen planus: An overview. Oral Surg Oral Med Oral Pathol Oral Radiol. 122:72–80. 2016. View Article : Google Scholar : PubMed/NCBI | |
Roopashree MR, Gondhalekar RV, Shashikanth MC, George J, Thippeswamy SH and Shukla A: Pathogenesis of oral lichen planus-a review. J Oral Pathol Med. 39:729–734. 2010. View Article : Google Scholar : PubMed/NCBI | |
Arão TC, Guimarães AL, de Paula AM, Gomes CC and Gomez RS: Increased miRNA-146a and miRNA-155 expressions in oral lichen planus. Arch Dermatol Res. 304:371–375. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ebert MS and Sharp PA: Roles for microRNAs in conferring robustness to biological processes. Cell. 149:515–524. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Wu Y, Yang H, Liu J, Dan H, Zeng X, Zhou Y, Jiang L and Chen Q: MicroRNAs in oral lichen planus and potential miRNA-mRNA pathogenesis with essential cytokines: A review. Oral Surg Oral Med Oral Pathol Oral Radiol. 122:164–173. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gassling V, Hampe J, Açil Y, Braesen JH, Wiltfang J and Häsler R: Disease-associated miRNA-mRNA networks in oral lichen planus. PLoS One. 8:e630152013. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Wu J and Ye F: Expression of miRNA-155 and miRNA-146a in peripheral blood mononuclear cells and plasma of oral lichen planus patients. Zhonghua Kou Qiang Yi Xue Za Zhi. 50:23–27. 2015.(In Chinese). PubMed/NCBI | |
Moffett HF and Novina CD: A small RNA makes a Bic difference. Genome Biol. 8:2212007. View Article : Google Scholar : PubMed/NCBI | |
Sagari S, Sanadhya S, Doddamani M and Rajput R: Molecular markers in oral lichen planus: A systematic review. J Oral Maxillofac Pathol. 20:115–121. 2016. View Article : Google Scholar : PubMed/NCBI | |
Eisen D: The clinical features, malignant potential, and systemic associations of oral lichen planus: A study of 723 patients. J Am Acad Dermatol. 46:207–214. 2002. View Article : Google Scholar : PubMed/NCBI | |
Aghbari SMH, Abushouk AI, Attia A, Elmaraezy A, Menshawy A, Ahmed MS, Elsaadany BA and Ahmed EM: Malignant transformation of oral lichen planus and oral lichenoid lesions: A meta-analysis of 20095 patient data. Oral Oncol. 68:92–102. 2017. View Article : Google Scholar : PubMed/NCBI | |
Eisen D, Carrozzo M, Bagan Sebastian JV and Thongprasom K: Number V Oral lichen planus: Clinical features and management. Oral Dis. 11:338–349. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhang D, Han Q, Zhao X, Zeng X, Xu Y, Sun Z and Chen Q: Role of distinct CD4(+) T helper subset in pathogenesis of oral lichen planus. J Oral Pathol Med. 45:385–393. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tan YQ, Li Q, Zhang J, Du GF, Lu R and Zhou G: Increased circulating CXCR5+ CD4+ T follicular helper-like cells in oral lichen planus. J Oral Pathol Med. 46:803–809. 2017. View Article : Google Scholar : PubMed/NCBI | |
Friedman RC, Farh KK, Burge CB and Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zamore PD and Haley B: Ribo-gnome: The big world of small RNAs. Science. 309:1519–1524. 2005. View Article : Google Scholar : PubMed/NCBI | |
Raisch J, Darfeuille-Michaud A and Nguyen HT: Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol. 19:2985–2996. 2013. View Article : Google Scholar : PubMed/NCBI | |
Contreras J and Rao DS: MicroRNAs in inflammation and immune responses. Leukemia. 26:404–413. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cremer TJ, Ravneberg DH, Clay CD, Piper-Hunter MG, Marsh CB, Elton TS, Gunn JS, Amer A, Kanneganti TD, Schlesinger LS, et al: MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response. PLoS One. 4:e85082009. View Article : Google Scholar : PubMed/NCBI | |
Tili E, Michaille JJ and Croce CM: MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev. 253:167–184. 2013. View Article : Google Scholar : PubMed/NCBI | |
Faraoni I, Antonetti FR, Cardone J and Bonmassar E: miR-155 gene: A typical multifunctional microRNA. Biochim Biophys Acta. 1792:497–505. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hu JY, Zhang J, Ma JZ, Liang XY, Chen GY, Lu R, Du GF and Zhou G: MicroRNA-155-IFN-γ feedback loop in CD4(+)T cells of erosive type oral lichen planus. Sci Rep. 5:169352015. View Article : Google Scholar : PubMed/NCBI | |
Rasmussen SB, Reinert LS and Paludan SR: Innate recognition of intracellular pathogens: Detection and activation of the first line of defense. APMIS. 117:323–337. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vigorito E, Kohlhaas S, Lu D and Leyland R: miR-155: An ancient regulator of the immune system. Immunol Rev. 253:146–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mills CD, Kincaid K, Alt JM, Heilman MJ and Hill AM: M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 164:6166–6173. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Biswas SK, Galdiero MR, Sica A and Locati M: Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 229:176–185. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma F, Liu F, Ding L, You M, Yue H, Zhou Y and Hou Y: Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharm Biol. 55:1263–1273. 2017. View Article : Google Scholar : PubMed/NCBI | |
O'Connell RM, Taganov KD, Boldin MP, Cheng G and Baltimore D: MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA. 104:1604–1609. 2007. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Nunez RT, Louafi F and Sanchez-Elsner T: The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem. 286:1786–1794. 2011. View Article : Google Scholar : PubMed/NCBI | |
Louafi F, Martinez-Nunez RT and Sanchez-Elsner T: MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}. J Biol Chem. 285:41328–41336. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wilson HM: SOCS proteins in macrophage polarization and function. Front Immunol. 5:3572014. View Article : Google Scholar : PubMed/NCBI | |
Fuss IJ and Strober W: The role of IL-13 and NK T cells in experimental and human ulcerative colitis. Mucosal Immunol. 1 Suppl 1:S31–S33. 2008. View Article : Google Scholar : PubMed/NCBI | |
Massagué J: TGFβ signalling in context. Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shi Y and Massagué J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI | |
Turner ML, Schnorfeil FM and Brocker T: MicroRNAs regulate dendritic cell differentiation and function. J Immunol. 187:3911–3917. 2011. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki A and Medzhitov R: Regulation of adaptive immunity by the innate immune system. Science. 327:291–295. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA and Pierre P: MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci USA. 106:2735–2740. 2009. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Nunez RT, Louafi F, Friedmann PS and Sanchez-Elsner T: MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem. 284:16334–16342. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dunand-Sauthier I, Irla M, Carnesecchi S, Seguín-Estévez Q, Vejnar CE, Zdobnov EM, Santiago-Raber ML and Reith W: Repression of arginase-2 expression in dendritic cells by microRNA-155 is critical for promoting T cell proliferation. J Immunol. 193:1690–1700. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ma YL, Ma ZJ, Wang M, Liao MY, Yao R and Liao YH: MicroRNA-155 induces differentiation of RAW264.7 cells into dendritic-like cells. Int J Clin Exp Pathol. 8:14050–14062. 2015.PubMed/NCBI | |
Caparrós E, Munoz P, Sierra-Filardi E, Serrano-Gómez D, Puig-Kröger A, Rodríguez-Fernández JL, Mellado M, Sancho J, Zubiaur M and Corbí AL: DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood. 107:3950–3958. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lind EF, Millar DG, Dissanayake D, Savage JC, Grimshaw NK, Kerr WG and Ohashi PS: miR-155 upregulation in dendritic cells is sufficient to break tolerance in vivo by negatively regulating SHIP1. J Immunol. 195:4632–4640. 2015. View Article : Google Scholar : PubMed/NCBI | |
Costinean S, Sandhu SK, Pedersen IM, Tili E, Trotta R, Perrotti D, Ciarlariello D, Neviani P, Harb J, Kauffman LR, et al: Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood. 114:1374–1382. 2009. View Article : Google Scholar : PubMed/NCBI | |
Evel-Kabler K, Song XT, Aldrich M, Huang XF and Chen SY: SOCS1 restricts dendritic cells' ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest. 116:90–100. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yoshida R, Suzuki M, Sakaguchi R, Hasegawa E, Kimura A, Shichita T, Sekiya T, Shiraishi H, Shimoda K and Yoshimura A: Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo. Biochem Biophys Res Commun. 423:247–252. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dunand-Sauthier I, Santiago-Raber ML, Capponi L, Vejnar CE, Schaad O, Irla M, Seguín-Estévez Q, Descombes P, Zdobnov EM, Acha-Orbea H and Reith W: Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function. Blood. 117:4490–4500. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sullivan RP, Fogel LA, Leong JW, Schneider SE, Wong R, Romee R, Thai TH, Sexl V, Matkovich SJ, Dorn GW II, et al: MicroRNA-155 tunes both the threshold and extent of NK cell activation via targeting of multiple signaling pathways. J Immunol. 191:5904–5913. 2013. View Article : Google Scholar : PubMed/NCBI | |
Trotta R, Chen L, Costinean S, Josyula S, Mundy-Bosse BL, Ciarlariello D, Mao C, Briercheck EL, McConnell KK, Mishra A, et al: Overexpression of miR-155 causes expansion, arrest in terminal differentiation and functional activation of mouse natural killer cells. Blood. 121:3126–3134. 2013. View Article : Google Scholar : PubMed/NCBI | |
Trotta R, Parihar R, Yu J, Becknell B, Allard J II, Wen J, Ding W, Mao H, Tridandapani S, Carson WE and Caligiuri MA: Differential expression of SHIP1 in CD56bright and CD56dim NK cells provides a molecular basis for distinct functional responses to monokine costimulation. Blood. 105:3011–3018. 2005. View Article : Google Scholar : PubMed/NCBI | |
Trotta R, Chen L, Ciarlariello D, Josyula S, Mao C, Costinean S, Yu L, Butchar JP, Tridandapani S, Croce CM and Caligiuri MA: miR-155 regulates IFN-γ production in natural killer cells. Blood. 119:3478–3485. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zawislak CL, Beaulieu AM, Loeb GB, Karo J, Canner D, Bezman NA, Lanier LL, Rudensky AY and Sun JC: Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155. Proc Natl Acad Sci USA. 110:6967–6972. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ikeda J, Tian T, Wang Y, Hori Y, Honma K, Wada N and Morii E: Expression of FoxO3a in clinical cases of malignant lymphoma. Pathol Res Pract. 209:716–720. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ji WG, Zhang XD, Sun XD, Wang XQ, Chang BP and Zhang MZ: miRNA-155 modulates the malignant biological characteristics of NK/T-cell lymphoma cells by targeting FOXO3a gene. J Huazhong Univ Sci Technolog Med Sci. 34:882–888. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, et al: Requirement of bic/microRNA-155 for normal immune function. Science. 316:608–611. 2007. View Article : Google Scholar : PubMed/NCBI | |
de Yebenes VG, Bartolome-Izquierdo N and Ramiro AR: Regulation of B-cell development and function by microRNAs. Immunol Rev. 253:25–39. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sandhu SK, Volinia S, Costinean S, Galasso M, Neinast R, Santhanam R, Parthun MR, Perrotti D, Marcucci G, Garzon R and Croce CM: miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Emu-miR-155 transgenic mouse model. Proc Natl Acad Sci USA. 109:20047–20052. 2012. View Article : Google Scholar : PubMed/NCBI | |
Clare S, John V, Walker AW, Hill JL, Abreu-Goodger C, Hale C, Goulding D, Lawley TD, Mastroeni P, Frankel G, et al: Enhanced susceptibility to Citrobacter rodentium infection in microRNA-155-deficient mice. Infect Immun. 81:723–732. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, et al: Regulation of the germinal center response by microRNA-155. Science. 316:604–608. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, et al: microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 27:847–859. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bolisetty MT, Dy G, Tam W and Beemon KL: Reticuloendotheliosis virus strain T induces miR-155, which targets JARID2 and promotes cell survival. J Virol. 83:12009–12017. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa R, Leyland R, Meyer-Hermann M, Lu D, Turner M, Arbore G, Phan TG, Brink R and Vigorito E: MicroRNA-155 controls affinity-based selection by protecting c-MYC+ B cells from apoptosis. J Clin Invest. 126:377–388. 2016. View Article : Google Scholar : PubMed/NCBI | |
Busslinger M: Transcriptional control of early B cell development. Annu Rev Immunol. 22:55–79. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bouamar H, Jiang D, Wang L, Lin AP, Ortega M and Aguiar RC: MicroRNA 155 control of p53 activity is context dependent and mediated by Aicda and Socs1. Mol Cell Biol. 35:1329–1340. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang D and Aguiar RC: MicroRNA-155 controls RB phosphorylation in normal and malignant B lymphocytes via the noncanonical TGF-beta1/SMAD5 signaling module. Blood. 123:86–93. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rai D, Kim SW, McKeller MR, Dahia PL and Aguiar RC: Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc Natl Acad Sci USA. 107:3111–3116. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang N and Bevan MJ: CD8(+) T cells: Foot soldiers of the immune system. Immunity. 35:161–168. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Diaz R, Blanco-Dominguez R, Lasarte S, Tsilingiri K, Martín-Gayo E, Linillos-Pradillo B, de la Fuente H, Sánchez-Madrid F, Nakagawa R, Toribio ML and Martín P: Thymus-derived regulatory T cell development is regulated by C-Type lectin-mediated BIC/MicroRNA 155 expression. Mol Cell Boil. 37:e003042017. | |
Hwang ES, White IA and Ho IC: An IL-4-independent and CD25-mediated function of c-maf in promoting the production of Th2 cytokines. Proc Natl Acad Sci USA. 99:13026–13030. 2002. View Article : Google Scholar : PubMed/NCBI | |
O'Garra A and Vieira P: Regulatory T cells and mechanisms of immune system control. Nat Med. 10:801–805. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bettelli E, Korn T, Oukka M and Kuchroo VK: Induction and effector functions of T(H)17 cells. Nature. 453:1051–1057. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yao R, Ma YL, Liang W, Li HH, Ma ZJ, Yu X and Liao YH: MicroRNA-155 modulates treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1. PLoS One. 7:e460822012. View Article : Google Scholar : PubMed/NCBI | |
Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K and Rudensky AY: Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity. 30:80–91. 2009. View Article : Google Scholar : PubMed/NCBI | |
Harada M, Nakashima K, Hirota T, Shimizu M, Doi S, Fujita K, Shirakawa T, Enomoto T, Yoshikawa M, Moriyama H, et al: Functional polymorphism in the suppressor of cytokine signaling 1 gene associated with adult asthma. Am J Respir Cell Mol Biol. 36:491–496. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dudda JC, Salaun B, Ji Y, Palmer DC, Monnot GC, Merck E, Boudousquie C, Utzschneider DT, Escobar TM, Perret R, et al: MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer. Immunity. 38:742–753. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huffaker TB and O'Connell RM: miR-155-SOCS1 as a functional axis: Satisfying the burden of proof. Immunity. 43:3–4. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weniger MA, Melzner I, Menz CK, Wegener S, Bucur AJ, Dorsch K, Mattfeldt T, Barth TF and Möller P: Mutations of the tumor suppressor gene SOCS-1 in classical hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene. 25:2679–2684. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pomerantz JL and Baltimore D: Two pathways to NF-kappaB. Mol Cell. 10:693–695. 2002. View Article : Google Scholar : PubMed/NCBI | |
Musikacharoen T, Matsuguchi T, Kikuchi T and Yoshikai Y: NF-kappa B and STAT5 play important roles in the regulation of mouse Toll-like receptor 2 gene expression. J Immunol. 166:4516–4524. 2001. View Article : Google Scholar : PubMed/NCBI | |
Strebovsky J, Walker P and Dalpke AH: Suppressor of cytokine signaling proteins as regulators of innate immune signaling. Front Biosci (Landmark Ed). 17:1627–1639. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li J, Liu Z, Jiang S, Cortesini R, Lederman S and Suciu-Foca N: T suppressor lymphocytes inhibit NF-kappa B-mediated transcription of CD86 gene in APC. J Immunol. 163:6386–6392. 1999.PubMed/NCBI | |
Baetz A, Frey M, Heeg K and Dalpke AH: Suppressor of cytokine signaling (SOCS) proteins indirectly regulate toll-like receptor signaling in innate immune cells. J Boil Chem. 279:54708–54715. 2004. View Article : Google Scholar | |
Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, Rottapel R, Yamaoka S and Lu KP: Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell. 12:1413–1426. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ceskova P, Chichger H, Wallace M, Vojtesek B and Hupp TR: On the mechanism of sequence-specific DNA-dependent acetylation of p53: The acetylation motif is exposed upon DNA binding. J Mol Boil. 357:442–456. 2006. View Article : Google Scholar | |
Guikema JE, Linehan EK, Esa N, Tsuchimoto D, Nakabeppu Y, Woodland RT and Schrader CE: Apurinic/apyrimidinic endonuclease 2 regulates the expansion of germinal centers by protecting against activation-induced cytidine deaminase-independent DNA damage in B cells. J Immunol. 193:931–939. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hirota J, Osaki T and Tatemoto Y: Immunohistochemical staining of infiltrates in oral lichen planus. Pathol Res Pract. 186:625–632. 1990. View Article : Google Scholar : PubMed/NCBI | |
Payeras MR, Cherubini K, Figueiredo MA and Salum FG: Oral lichen planus: Focus on etiopathogenesis. Arch Oral Boil. 58:1057–1069. 2013. View Article : Google Scholar | |
Mignogna MD, Fedele S, Lo Russo L, Lo Muzio L and Bucci E: Immune activation and chronic inflammation as the cause of malignancy in oral lichen planus: Is there any evidence ? Oral Oncol. 40:120–130. 2004. View Article : Google Scholar : PubMed/NCBI | |
Santoro A, Majorana A, Roversi L, Gentili F, Marrelli S, Vermi W, Bardellini E, Sapelli P and Facchetti F: Recruitment of dendritic cells in oral lichen planus. J Pathol. 205:426–434. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gueiros LA, Gondak R, Jorge Junior J, Coletta RD, Carvalho Ade A, Leão JC, de Almeida OP and Vargas PA: Increased number of Langerhans cells in oral lichen planus and oral lichenoid lesions. Oral Surg Oral Med Oral Pathol Oral Radiol. 113:661–666. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yamauchi M, Moriyama M, Hayashida JN, Maehara T, Ishiguro N, Kubota K, Furukawa S, Ohta M, Sakamoto M, Tanaka A and Nakamura S: Myeloid dendritic cells stimulated by thymic stromal lymphopoietin promote Th2 immune responses and the pathogenesis of oral lichen planus. PLoS One. 12:e01730172017. View Article : Google Scholar : PubMed/NCBI | |
Trucci VM, Salum FG, Figueiredo MA and Cherubini K: Interrelationship of dendritic cells, type 1 interferon system, regulatory T cells and toll-like receptors and their role in lichen planus and lupus erythematosus-a literature review. Arch Oral Biol. 58:1532–1540. 2013. View Article : Google Scholar : PubMed/NCBI | |
Skrzeczynska-Moncznik J, Stefanska A, Zabel BA, Kapinska-Mrowiecka M, Butcher EC and Cichy J: Chemerin and the recruitment of NK cells to diseased skin. Acta Biochim Pol. 56:355–360. 2009.PubMed/NCBI | |
Divya VC and Sathasivasubramanian S: Estimation of serum and salivary immunoglobulin G and immunoglobulin A in oral pre-cancer: A study in oral submucous fibrosis and oral lichen planus. J Nat Sci Biol Med. 5:90–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
Albanidou-Farmaki E, Kayavis I, Sideropoulos I, Papanayiotou P and Polymenidis Z: Serum immunoglobulins IgA, IgG and IgM, and oral lichen planus. Stomatologia (Athenai). 47:114–120. 1990.(In Greek, Modern). PubMed/NCBI | |
Sistig S, Vucicevic-Boras V, Lukac J and Kusic Z: Salivary IgA and IgG subclasses in oral mucosal diseases. Oral Dis. 8:282–286. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ghaleyani P, Sardari F and Akbari M: Salivary IgA and IgG in oral lichen planus and oral lichenoid reactions diseases. Adv Biomed Res. 1:732012.PubMed/NCBI | |
Zhou L, Cao T, Wang Y, Yao H, Du G, Chen G, Niu X and Tang G: Frequently increased but functionally impaired CD4+CD25+ regulatory T cells in patients with oral lichen planus. Inflammation. 39:1205–1215. 2016.PubMed/NCBI | |
Zhou XJ, Sugerman PB, Savage NW, Walsh LJ and Seymour GJ: Intra-epithelial CD8+ T cells and basement membrane disruption in oral lichen planus. J Oral Pathol Med. 31:23–27. 2002. View Article : Google Scholar : PubMed/NCBI | |
Georgakopoulou EA, Achtari MD, Achtaris M, Foukas PG and Kotsinas A: Oral lichen planus as a preneoplastic inflammatory model. J Biomed Biotechnol. 2012:7596262012. View Article : Google Scholar : PubMed/NCBI | |
Ebrahimi M, Boldrup L, Coates PJ, Wahlin YB, Bourdon JC and Nylander K: Expression of novel p53 isoforms in oral lichen planus. Oral Oncol. 44:156–161. 2008. View Article : Google Scholar : PubMed/NCBI |