1
|
Chen JY and Mao JH: Henoch-Schönlein
purpura nephritis in children: Incidence, pathogenesis and
management. World J Pediatr. 11:29–34. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kawasaki Y, Ono A, Ohara S, Suzuki Y,
Suyama K, Suzuki J and Hosoya M: Henoch-Schönlein purpura nephritis
in childhood: Pathogenesis, prognostic factors and treatment.
Fukushima J Med Sci. 59:15–26. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gardner-Medwin JM, Dolezalova P, Cummins C
and Southwood TR: Incidence of Henoch-Schönlein purpura, Kawasaki
disease, and rare vasculitides in children of different ethnic
origins. Lancet. 360:1197–1202. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yang YH, Hung CF, Hsu CR, Wang LC, Chuang
YH, Lin YT and Chiang BL: A nationwide survey on epidemiological
characteristics of childhood Henoch-Schönlein purpura in Taiwan.
Rheumatology (Oxford). 44:618–622. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Saulsbury FT: Clinical update:
Henoch-Schönlein purpura. Lancet. 369:976–978. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sano H, Izumida M, Shimizu H and Ogawa Y:
Risk factors of renal involvement and significant proteinuria in
Henoch-Schönlein purpura. Eur J Pediatr. 161:196–201. 2002.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Kung JT, Colognori D and Lee JT: Long
noncoding RNAs: Past, present, and future. Genetics. 193:651–669.
2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kapusta A and Feschotte C: Volatile
evolution of long noncoding RNA repertoires: Mechanisms and
biological implications. Trends Genet. 30:439–452. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yu TM, Palanisamy K, Sun KT, Day YJ, Shu
KH, Wang IK, Shyu WC, Chen P, Chen YL and Li CY: RANTES mediates
kidney ischemia reperfusion injury through a possible role of
HIF-1α and LncRNA PRINS. Sci Rep. 6:184242016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lin J, Zhang X, Xue C, Zhang H, Shashaty
MG, Gosai SJ, Meyer N, Grazioli A, Hinkle C, Caughey J, et al: The
long noncoding RNA landscape in hypoxic and inflammatory renal
epithelial injury. Am J Physiol Renal Physiol. 309:F901–F913. 2015.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Alvarez ML and DiStefano JK: Functional
characterization of the plasmacytoma variant translocation 1 gene
(PVT1) in diabetic nephropathy. PLoS One. 6:e186712011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Duan LJ, Ding M, Hou LJ, Cui YT, Li CJ and
Yu DM: Long noncoding RNA TUG1 alleviates extracellular matrix
accumulation via mediating microRNA-377 targeting of PPARγ in
diabetic nephropathy. Biochem Biophys Res Commun. 484:598–604.
2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Huang YS, Hsieh HY, Shih HM, Sytwu HK and
Wu CC: Urinary Xist is a potential biomarker for membranous
nephropathy. Biochem Biophys Res Commun. 452:415–421. 2014.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Arvaniti E, Moulos P, Vakrakou A,
Chatziantoniou C, Chadjichristos C, Kavvadas P, Charonis A and
Politis PK: Whole-transcriptome analysis of UUO mouse model of
renal fibrosis reveals new molecular players in kidney diseases.
Sci Rep. 6:262352016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wu Y, Zhang F, Ma J, Zhang X, Wu L, Qu B,
Xia S, Chen S, Tang Y and Shen N: Association of large intergenic
noncoding RNA expression with disease activity and organ damage in
systemic lupus erythematosus. Arthritis Res Ther. 17:1312015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Bao X, Duan J, Yan Y, Ma X, Zhang Y, Wang
H, Ni D, Wu S, Peng C, Fan Y, et al: Upregulation of long noncoding
RNA PVT1 predicts unfavorable prognosis in patients with clear cell
renal cell carcinoma. Cancer Biomark. 21:55–63. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Leti F and DiStefano JK: Long noncoding
RNAs as diagnostic and therapeutic targets in type 2 diabetes and
related complications. Genes (Basel). 8(pii): E2072017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Subspecialty Group of Renal Disease,
Society of Pediatrics, Chinese Medical Association: Clinical
classification, diagnosis and treatment of glomerular diseases in
children. Chin J Pediatr. 39:746–749. 2001.
|
19
|
Martin M: Cutadapt removes adapter
sequences from high-throughput sequencing reads. EMBnet J. 17:2011.
View Article : Google Scholar
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu GL, Gao YF, Xia ZK, Fan ZM, Ren XG,
Mao S, He X and Sun T: The pathological analysis of 2551 children
patients with glomerulopathy. J Med Postgrad. 24:294–297. 2011.(In
Chinese).
|
22
|
Hennies I, Gimpel C, Gellermann J, Möller
K, Mayer B, Dittrich K, Büscher AK, Hansen M8, Aulbert W, Wühl E,
et al: Presentation of pediatric Henoch-Schönlein purpura nephritis
changes with age and renal histology depends on biopsy timing.
Pediatr Nephrol. 33:277–286. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chan H, Tang YL, Lv XH, Zhang GF, Wang M,
Yang HP and Li Q: Risk factors associated with renal involvement in
childhood Henoch-Schönlein purpura: A meta-analysis. PLoS One.
11:e01673462016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bogdanović R: Henoch-Schönlein purpura
nephritis in children: Risk factors, prevention and treatment. Acta
Paediatr. 98:1882–1889. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gibb EA, Vucic EA, Enfield KS, Stewart GL,
Lonergan KM, Kennett JY, Becker-Santos DD, MacAulay CE, Lam S,
Brown CJ and Lam WL: Human cancer long non-coding RNA
transcriptomes. PLoS One. 6:e259152011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Arab K, Park YJ, Lindroth AM, Schäfer A,
Oakes C, Weichenhan D, Lukanova A, Lundin E, Risch A, Meister M, et
al: Long noncoding RNA TARID directs demethylation and activation
of the tumor suppressor TCF21 via GADD45A. Mol Cell. 55:604–614.
2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ,
Gong J, Ren S, Wang X, Chen I, Wang H, et al: The long noncoding
RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy.
Nat Med. 22:1131–1139. 2016. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Li SY and Susztak K: The long noncoding
RNA Tug1 connects metabolic changes with kidney disease in
podocytes. J Clin Invest. 126:4072–4075. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen
C, Cai Y, Huang H, Yang Y, Liu Y, et al: LincRNA-p21 regulates
neointima formation, vascular smooth muscle cell proliferation,
apoptosis, and atherosclerosis by enhancing p53 activity.
Circulation. 130:1452–1465. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hu G, Lou Z and Gupta M: The long
non-coding RNA GAS5 cooperates with the eukaryotic translation
initiation factor 4E to regulate c-Myc translation. PLoS One.
9:e1070162014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bi HS, Yang XY, Yuan JH, Yang F, Xu D, Guo
YJ, Zhang L, Zhou CC, Wang F and Sun SH: H19 inhibits RNA
polymerase II-mediated transcription by disrupting the hnRNP
U-actin complex. Biochim Biophys Acta. 1830:4899–4906. 2013.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Song H, Sun W, Ye G, Ding X, Liu Z, Zhang
S, Xia T, Xiao B, Xi Y and Guo J: Long non-coding RNA expression
profile in human gastric cancer and its clinical significances. J
Transl Med. 11:2252013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yu A, Wang Y, Yin J, Zhang J, Cao S, Cao J
and Shen Y: Microarray analysis of long non-coding RNA expression
profiles in monocytic myeloid-derived suppressor cells in
Echinococcus granulosus-infected mice. Parasit Vectors. 11:3272018.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Xiang Y, Zhang Y, Tang Y and Li Q: MALAT1
modulates TGF-β1-induced endothelial-to-mesenchymal transition
through downregulation of miR-145. Cell Physilo Biochem.
42:357–372. 2017. View Article : Google Scholar
|
35
|
Zsóri KS, Muszbek L, Csiki Z and Shemirani
AH: Validation of reference genes for the determination of platelet
transcript level in healthy individuals and in patients with the
history of myocardial infarction. Int J Mol Sci. 14:3456–3466.
2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kozmus CE and Potočnik U: Reference genes
for real-time qPCR in leukocytes from asthmatic patients before and
after anti-asthma treatment. Gene. 570:71–77. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang X, Ding L and Sandford AJ: Selection
of regerence genes for gene expression studies in human neutrophils
by real-time PCR. BMC Mol Biol. 6:42005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang J, Wang Y, Wang H, Hao X, Wu Y and
Guo J: Selection of reference genes for gene expression studies in
porcine whole blood and peripheral blood mononuclear cells under
polyinosinic: Polycytidylic acid stimulation. Asian-Australas J
Anim Sci. 27:471–478. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Park SJ, Suh JS, Lee JH, Lee JW, Kim SH,
Han KH and Shin JI: Advances in our understanding of the
pathogenesis of Henoch-Schönlein purpura and the implications for
improving its diagnosis. Expert Rev Clin Immunol. 9:1223–1238.
2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Davin JC: Henoch-Schonlein purpura
nephritis: Pathophysiology, treatment, and future strategy. Clin J
Am Soc Nephrol. 6:679–689. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shin JI, Koh H and Lee JS:
Henoch-Schönlein purpura associated with helicobacter pylori
infection: The pathogenic roles of IgA, C3, and cryoglobulins?
Pediatr Dermatol. 26:768–769. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hirayama K, Kobayashi M, Muro K, Yoh K,
Yamagata K and Koyama A: Specific T-cell receptor usage with
cytokinemia in Henoch-Schönlein purpura nephritis associated with
Staphylococcus aureus infection. J Intern Med. 249:289–295. 2001.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Chen T, Guo ZP, Li MM, Li JY, Jiao XY,
Zhang YH and Liu HJ: Tumour necrosis factor-like weak inducer of
apoptosis (TWEAK), an important mediator of endothelial
inflammation, is associated with the pathogenesis of
Henoch-Schonlein purpura. Clin Exp Immunol. 166:64–71. 2011.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Haslett C: Granulocyte apoptosis and
inflammatory disease. Br Med Bull. 53:669–683. 1997. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ozaltin F, Besbas N, Uckan D, Tuncer M,
Topaloglu R, Ozen S, Saatci U and Bakkaloglu A: The role of
apoptosis in childhood Henoch-Schonlein purpura. Clin Rheumatol.
22:265–267. 2003. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yuan P, Bo Y, Ming G, Wen-Jun F, Qin Z and
Bo H: Apoptosis of human umbilical vein endothelial cells (HUVEC)
induced by IgA1 isolated from Henoch-Schonlein purpura children.
Asian Pac J Allergy Immunol. 32:34–38. 2014.PubMed/NCBI
|