1
|
Ning G: Decade in review-type 2 diabetes
mellitus: At the centre of things. Nat Rev Endocrinol. 11:636–638.
2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ley RE, Turnbaugh PJ, Klein S and Gordon
JI: Microbial ecology: Human gut microbes associated with obesity.
Nature. 444:1022–1023. 2006. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Papathanasopoulos A and Camilleri M:
Dietary fiber supplements: Effects in obesity and metabolic
syndrome and relationship to gastrointestinal functions.
Gastroenterology. 138:65–72.e1-e2. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Robertson MD, Currie JM, Morgan LM, Jewell
DP and Frayn KN: Prior short-term consumption of resistant starch
enhances postprandial insulin sensitivity in healthy subjects.
Diabetologia. 46:659–665. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Robertson MD, Bickerton AS, Dennis AL,
Vidal H and Frayn KN: Insulin-sensitizing effects of dietary
resistant starch and effects on skeletal muscle and adipose tissue
metabolism. Am J Clin Nutr. 82:559–567. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
De Vadder F, Kovatcheva-Datchary P,
Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F and Mithieux
G: Microbiota-generated metabolites promote metabolic benefits via
gut-brain neural circuits. Cell. 156:84–96. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Robertson MD, Currie JM, Morgan LM, Jewell
DP and Frayn KN: Prior short-term consumption of resistant starch
enhances postprandial insulin sensitivity in healthy subjects.
Diabetologia. 46:659–665. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Gao Z, Yin J, Zhang J, Ward RE, Martin RJ,
Lefevre M, Cefalu WT and Ye J: Butyrate improves insulin
sensitivity and increases energy expenditure in mice. Diabetes.
58:1509–1517. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lin HV, Frassetto A, Kowalik EJ Jr,
Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest
G and Marsh DJ: Butyrate and propionate protectagainst diet-induced
obesity and regulate gut hormones via free fatty acid receptor
3-independent mechanisms. PLoS One. 7:e352402012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ellis L, Hammers H and Pili R: Targeting
tumor angiogenesis with histone deacetylase inhibitors. Cancer
Lett. 280:145–153. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Haumaitre C, Lenoir O and Scharfmann R:
Histone deacetylase inhibitors modify pancreatic cell fate
determination and amplify endocrine progenitors. Mol Cell Biol.
28:6373–6383. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Khan S and Jena GB: Protective role of
sodium butyrate, a HDAC inhibitor on beta-cell proliferation,
function and glucose homeostasis through modulation of p38/ERK MAPK
and apoptotic pathways: Study in juvenile diabetic rat. Chem Biol
Interact. 213:1–12. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li H, Gao Z, Zhang J, Ye X, Xu A, Ye J and
Jia W: Sodium butyrate stimulates expression of fibroblast growth
factor 21 in liver by inhibition of histone deacetylase 3.
Diabetes. 61:797–806. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hundal RS, Krssak M, Dufour S, Laurent D,
Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF,
Landau BR and Shulman GI: Mechanism by which metformin reduces
glucose production in type 2 diabetes. Diabetes. 49:2063–2069.
2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mihaylova MM, Vasquez DS, Ravnskjaer K,
Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M and
Shaw RJ: Class IIa histone deacetylases are hormone-activated
regulators of FOXO and mammalian glucose homeostasis. Cell.
145:607–621. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ip W, Shao W, Chiang YT and Jin T: The Wnt
signaling pathway effector TCF7L2 is upregulated by insulin and
represses hepatic gluconeogenesis. Am J Physiol Endocrinol Metab.
303:E1166–E1176. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Taddei A, Roche D, Bickmore WA and
Almouzni G: The effects of histone deacetylase inhibitors on
heterochromatin: Implications for anticancer therapy? EMBO Rep.
6:520–524. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Perry RJ, Borders CB, Cline GW, Zhang XM,
Alves TC, Petersen KF, Rothman DL, Kibbey RG and Shulman GI:
Propionate increases hepatic pyruvate cycling, anaplerosis and
alters mitochondrial metabolism. J Biol Chem. 291:12161–12170.
2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Altarejos JY and Montminy M: CREB and the
CRTC co-activators: Sensors for hormonal and metabolic signals. Nat
Rev Mol Cell Biol. 12:141–151. 2011. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Screaton RA, Conkright MD, Katoh Y, Best
JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR III,
Takemori H, et al: The CREB coactivator TORC2 functions as a
calcium- and cAMP-sensitive coincidence detector. Cell. 119:61–74.
2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Perriello G, Pampanelli S, Del Sindaco P,
Lalli C, Ciofetta M, Volpi E, Santeusanio F, Brunetti P and Bolli
GB: Evidence of increased systemic glucose production and
gluconeogenesis in an early stage of NIDDM. Diabetes. 46:1010–1016.
1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang W, Patil S, Chauhan B, Guo S, Powell
DR, Le J, Klotsas A, Matika R, Xiao X, Franks R, et al: FoxO1
regulates multiple metabolic pathways in the liver: Effects on
gluconeogenic, glycolytic, and lipogenic gene expression. J Biol
Chem. 281:10105–10117. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xiong H, Guo B, Gan Z, Song D, Lu Z, Yi H,
Wu Y, Wang Y and Du H: Butyrate upregulates endogenous host defense
peptides to enhance disease resistance in piglets via histone
deacetylase inhibition. Sci Rep. 6:270702016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Donohoe DR, Collins LB, Wali A, Bigler R,
Sun W and Bultman SJ: The Warburg effect dictates the mechanism of
butyrate-mediated histone acetylation and cell proliferation. Mol
Cell. 48:612–626. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Anderson JW and Bridges SR: Short-chain
fatty acid fermentation products of plant fiber affect glucose
metabolism of isolated rat hepatocytes. Proc Soc Exp Biol Med.
177:372–376. 1984. View Article : Google Scholar : PubMed/NCBI
|
27
|
Massillon D, Arinze IJ, Xu C and Bone F:
Regulation of glucose-6-phosphatase gene expression in cultured
hepatocytes and H4IIE cells by short-chain fatty acids: Role of
hepatic nuclear factor-4alpha. J Biol Chem. 278:40694–40701. 2003.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Diakos C, Prieschl EE, Saemann M, Novotny
V, Bohmig G, Csonga R, Baumruker T and Zlabinger GJ: Novel mode of
interference with nuclear factor of activated T-cells regulation in
T-cells by the bacterial metabolite n-butyrate. J Biol Chem.
277:24243–24251. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Weber TE and Kerr BJ: Butyrate
differentially regulates cytokines and proliferation in porcine
peripheral blood mononuclear cells. Vet Immunol Immunopathol.
113:139–147. 2006. View Article : Google Scholar : PubMed/NCBI
|