The diagnostic value of circulating microRNAs in heart failure (Review)
- Authors:
- Yao‑Meng Huang
- Wei‑Wei Li
- Jun Wu
- Mei Han
- Bing‑Hui Li
-
Affiliations: Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China, Department of Oncological Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China - Published online on: January 15, 2019 https://doi.org/10.3892/etm.2019.7177
- Pages: 1985-2003
-
Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Cordes KR and Srivastava D: MicroRNA regulation of cardiovascular development. Circ Res. 104:724–732. 2009. View Article : Google Scholar : PubMed/NCBI | |
Anderson ME, Brown JH and Bers DM: CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol. 51:468–473. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Savvatis K, Kang JS, Fan P, Zhong H, Schwartz K, Barry V, Mikels-Vigdal A, Karpinski S, Kornyeyev D, et al: Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun. 7:137102016. View Article : Google Scholar : PubMed/NCBI | |
Kawakami H, Kubota Y, Takeno S, Miyazaki Y, Wada T, Hamada R and Nanashima A: Gastrointestinal: Severe congestive heart failure and acute gastric mucosal necrosis. J Gastroenterol Hepatol. 32:9492017. View Article : Google Scholar : PubMed/NCBI | |
Petrovic D: Cytopathological basis of heart failure-cardiomyocyte apoptosis, interstitial fibrosis and inflammatory cell response. Folia Biol (Praha). 50:58–62. 2004.PubMed/NCBI | |
Orsborne C, Chaggar PS, Shaw SM and Williams SG: The renin-angiotensin-aldosterone system in heart failure for the non-specialist: The past, the present and the future. Postgrad Med J. 93:29–37. 2017. View Article : Google Scholar : PubMed/NCBI | |
Polyakova V, Loeffler I, Hein S, Miyagawa S, Piotrowska I, Dammer S, Risteli J, Schaper J and Kostin S: Fibrosis in endstage human heart failure: Severe changes in collagen metabolism and MMP/TIMP profiles. Int J Cardiol. 151:18–33. 2011. View Article : Google Scholar : PubMed/NCBI | |
Romaine SP, Tomaszewski M, Condorelli G and Samani NJ: MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart. 101:921–928. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Tong Z, Chen K, Hu X, Jin H and Hou M: The role of miRNA-132 against apoptosis and oxidative stress in heart failure. Biomed Res Int. 2018:34527482018.PubMed/NCBI | |
Gómez AM, Valdivia HH, Cheng H, Lederer MR, Santanaet LF, Cannel MB, McCune SA, Altschuld RA and Lederer WJ: Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science. 276:800–806. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kumar R, Woo MA, Birrer BV, Macey PM, Fonarow GC, Hamilton MA and Harper RM: Mammillary bodies and fornix fibers are injured in heart failure. Neurobiol Dis. 33:236–242. 2009. View Article : Google Scholar : PubMed/NCBI | |
Neupane B, Zhou Q, Gawaz M and Gramlich M: Personalized medicine in inflammatory cardiomyopathy. Per Med. 15:127–136. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dludla PV, Dias SC, Obonye N, Johnson R, Louw J and Nkambule BB: A systematic review on the protective effect of N-acetyl cysteine against diabetes-associated cardiovascular complications. Am J Cardiovasc Drugs. 18:283–298. 2018. View Article : Google Scholar : PubMed/NCBI | |
Güven Bağla A, Içkin Gülen M, Ercan F, Aşgün F, Ercan E and Bakar C: Changes in kidney tissue and effects of erythropoietin after acute heart failure. Biotech Histochem. 93:340–353. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lindner K, Haier J, Wang Z, Watson DI, Hussey DJ and Hummel R: Circulating microRNAs: Emerging biomarkers for diagnosis and prognosis in patients with gastrointestinal cancers. Clin Sci (Lond). 128:1–15. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li R, Geng HH, Xiao J, Qin XT, Wang F, Xing JH, Xia YF, Mao Y, Liang JW and Jia XP: miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1. Sci Rep. 6:290822016. View Article : Google Scholar : PubMed/NCBI | |
Ball JP, Syed M, Marañon RO, Hall ME, Kc R, Reckelhoff JF, Yanes Cardozo LL and Romero DG: Role and regulation of MicroRNAs in aldosterone-mediated cardiac injury and dysfunction in male rats. Endocrinology. 158:1859–1874. 2017. View Article : Google Scholar : PubMed/NCBI | |
Deng W, Wang Y, Long X, Zhao R, Wang Z, Liu Z, Cao S and Shi B: miR-21 reduces hydrogen peroxide-induced apoptosis in c-kit+ cardiac stem cells in vitro through PTEN/PI3K/Akt signaling. Oxid Med Cell Longev. 2016:53891812016. View Article : Google Scholar : PubMed/NCBI | |
Cheng M, Wu G, Song Y, Wang L, Tu L, Zhang L and Zhang C: Celastrol-induced suppression of the MiR-21/ERK signalling pathway attenuates cardiac fibrosis and dysfunction. Cell Physiol Biochem. 38:1928–1938. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiao J, Pan Y, Li XH, Yang XY, Feng YL, Tan HH, Jiang L, Feng J and Yu XY: Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis. 7:e22772016. View Article : Google Scholar : PubMed/NCBI | |
Tao H, Chen ZW, Yang JJ and Shi KH: MicroRNA-29a suppresses cardiac fibroblasts proliferation via targeting VEGF-A/MAPK signal pathway. Int J Biol Macromol. 88:414–423. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu CZ, Zhong Q and Huang YQ: Elevated plasma miR-29a levels are associated with increased carotid intima-media thickness in atherosclerosis patients. Tohoku J Exp Med. 241:183–188. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Wang F, Yu P, Wang X, Wang Y, Tang ST and Zhu HQ: Inhibition of miR-29b suppresses MAPK signaling pathway through targeting SPRY1 in atherosclerosis. Vascul Pharmacol. 102:29–36. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sassi Y, Avramopoulos P, Ramanujam D, Grüter L, Werfel S, Giosele S, Brunner A, Esfandyari D, Papadopoulou AS, De Strooper B, et al: Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nat Commun. 8:16142017. View Article : Google Scholar : PubMed/NCBI | |
Panizo S, Carrillo-López N, Naves-Díaz M, Solache-Berrocal G, Martínez-Arias L, Rodrigues-Díez RR, Fernández-Vázquez A, Martínez-Salgado C, Ruiz-Ortega M, Dusso A, et al: Regulation of miR-29b and miR-30c by vitamin D receptor activators contributes to attenuate uraemia-induced cardiac fibrosis. Nephrol Dial Transplant. 32:1831–1840. 2017. View Article : Google Scholar : PubMed/NCBI | |
Heid J, Cencioni C, Ripa R, Baumgart M, Atlante S, Milano G, Scopece A, Kuenne C, Guenther S, Azzimato V, et al: Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiac health. Sci Rep. 7:168392017. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Ji Q, Zhu H, Ren Y, Fan Z and Tian N: miR-30a attenuates cardiac fibrosis in rats with myocardial infarction by inhibiting CTGF. Exp Ther Med. 15:4318–4324. 2018.PubMed/NCBI | |
Roca-Alonso L, Castellano L, Mills A, Dabrowska AF, Sikkel MB, Pellegrino L, Jacob J, Frampton AE, Krell J, Coombes RC, et al: Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in β-adrenergic signaling and enhances apoptosis. Cell Death Dis. 6:e17542015. View Article : Google Scholar : PubMed/NCBI | |
Lai L, Chen J, Wang N, Zhu G, Duan X and Ling F: MiRNA-30e mediated cardioprotection of ACE2 in rats with Doxorubicin-induced heart failure through inhibiting cardiomyocytes autophagy. Life Sci. 169:69–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
van Middendorp LB, Kuiper M, Munts C, Wouters P, Maessen JG, van Nieuwenhoven FA and Prinzen FW: Local microRNA-133a downregulation is associated with hypertrophy in the dyssynchronous heart. ESC Heart Fail. 4:241–251. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Lin X, Yang X and Chang J: NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. Am J Physiol Heart Circ Physiol. 298:H1340–H1347. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li AY, Yang Q and Yang K: miR-133a mediates the hypoxia-induced apoptosis by inhibiting TAGLN2 expression in cardiac myocytes. Mol Cell Biochem. 400:173–181. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rangrez AY, Hoppe P, Kuhn C, Zille E, Frank J, Frey N and Frank D: MicroRNA miR-301a is a novel cardiac regulator of Cofilin-2. PLoS One. 12:e01839012017. View Article : Google Scholar : PubMed/NCBI | |
Dong H, Dong S, Zhang L, Gao X, Lv G, Chen W and Shao S: MicroRNA-214 exerts a Cardio-protective effect by inhibition of fibrosis. Anat Rec (Hoboken). 299:1348–1357. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chaturvedi P, Kalani A, Medina I, Familtseva A and Tyagi SC: Cardiosome mediated regulation of MMP9 in diabetic heart: Role of mir29b and mir455 in exercise. J Cell Mol Med. 19:2153–2161. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Shi YF, Diao HY, Li YX, Cui Y, Song XJ, Tian X, Li TY and Liu B: MicroRNA-135a regulates apoptosis induced by hydrogen peroxide in rat cardiomyoblast cells. Int J Biol Sci. 13:13–21. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ouyang M, Wang Q and Jian Z: MicroRNA-142-3p inhibits hypoxia/reoxygenation-induced apoptosis and fibrosis of cardiomyocytes by targeting high mobility group box 1. Int J Mol Med. 38:1377–1386. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Li T, Dong Z and Mi R: MicroRNA-410 is involved in mitophagy after cardiac ischemia/reperfusion injury by targeting high-mobility group box 1 protein. J Cell Biochem. 119:2427–2439. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Zhang R, Wu F and LI X: MicroRNA-208a regulates H9c2 cells simulated ischemia-reperfusion myocardial injury via targeting CHD9 through Notch/NF-kappa B signal pathways. Int Heart J. 59:580–588. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fan ZG, Qu XL, Chu P, Gao YL, Gao XF, Chen SL and Tian NL: MicroRNA-210 promotes angiogenesis in acute myocardial infarction. Mol Med Rep. 17:5658–5665. 2018.PubMed/NCBI | |
Zhang Y, Fang J and Ma H: Inhibition of miR-182-5p protects cardiomyocytes from hypoxia-induced apoptosis by targeting CIAPIN1. Biochem Cell Biol. 96:646–654. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Tong Z, Chen K, Hu X, Jin H and Hou M: The role of miRNA-132 against apoptosis and oxidative stress in heart failure. Biomed Res Int. 2018:34527482018.PubMed/NCBI | |
Zhou G, Li C, Feng J, Zhang J and Fang Y: lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Med. 8:130–139. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rubiś P, Totoń-Żurańska J, Wiśniowska-Śmiałek S, Holcman K, Kołton-Wróż M, Wołkow P, Wypasek E, Natorska J, Rudnicka-Sosin L, Pawlak A, et al: Relations between circulating microRNAs (miR-21, miR-26, miR-29, miR-30 and miR-133a), extracellular matrix fibrosis and serum markers of fibrosis in dilated cardiomyopathy. Int J Cardiol. 231:201–206. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ji Y, Qiu M, Shen Y, Gao L, Wang Y, Sun W, Li X, Lu Y and Kong X: MicroRNA-327 regulates cardiac hypertrophy and fibrosis induced by pressure overload. Int J Mol Med. 41:1909–1916. 2018.PubMed/NCBI | |
Lu Y and Wu F: A new miRNA regulator, miR-672, reduces cardiac hypertrophy by inhibiting JUN expression. Gene. 648:21–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Cai H, Li H, Gao Z and Song K: Atrial overexpression of microRNA-27b attenuates angiotensin II-induced atrial fibrosis and fibrillation by targeting ALK5. Hum Cell. 31:251–260. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Chen L, Ding J, Zhang J, Fan Z, Yang C, Yu Q and Yang J: Cardioprotective effect of miRNA-22 on hypoxia/reoxygenation induced cardiomyocyte injury in neonatal rats. Gene. 579:17–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yin H, Jiao L, Liu T, Gao Y, Shao Y, Zhang Y, Shan H, Zhang Y and Yang B: Abnormal downregulation of caveolin-3 mediates the pro-fibrotic action of MicroRNA-22 in a model of myocardial infarction. Cell Physiol Biochem. 45:1641–1653. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Lin S and Lv C: MiR-26a-5p regulates cardiac fibroblasts collagen expression by targeting ULK1. Sci Rep. 8:21042018. View Article : Google Scholar : PubMed/NCBI | |
Gu M, Wang J, Wang Y, Xu Y, Zhang Y, Wu W and Liao S: MiR-147b inhibits cell viability and promotes apoptosis of rat H9c2 cardiomyocytes via down-regulating KLF13 expression. Acta Biochim Biophys Sin (Shanghai). 50:288–297. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun N, Meng F, Xue N, Pang G, Wang Q and Ma H: Inducible miR-145 expression by HIF-1a protects cardiomyocytes against apoptosis via regulating SGK1 in simulated myocardial infarction hypoxic microenvironment. Cardiol J. 25:268–278. 2018.PubMed/NCBI | |
Chen Z, Zhang S, Guo C, Li J and Sang W: Downregulation of miR-200c protects cardiomyocytes from hypoxia-induced apoptosis by targeting GATA-4. Int J Mol Med. 39:1589–1596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Ji Y, Wan Z, Zhao B, Feng C, Zhao J, Li H and Song Y: Inhibition of miR-363 protects cardiomyocytes against hypoxia-induced apoptosis through regulation of Notch signaling. Biomed Pharmacother. 90:509–516. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li T, Yang GM, Zhu Y, Wu Y, Chen XY, Lan D, Tian K and Liu LM: Diabetes and hyperlipidemia induce dysfunction of VSMCs: Contribution of the metabolic inflammation/miRNA pathway. Am J Physiol Endocrinol Metab. 308:E257–E269. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gallego I, Beaumont J, López B, Ravassa S, Gómez-Doblas JJ, Moreno MU, Valencia F, de Teresa E, Díez J and González A: Potential role of microRNA-10b down-regulation in cardiomyocyte apoptosis in aortic stenosis patients. Clin Sci (Lond). 130:2139–2149. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hang P, Sun C, Guo J, Zhao J and Du Z: BDNF-mediates down-regulation of MicroRNA-195 inhibits ischemic cardiac apoptosis in rats. Int J Biol Sci. 12:979–989. 2016. View Article : Google Scholar : PubMed/NCBI | |
Blumensatt M, Fahlbusch P, Hilgers R, Bekaert M, Herzfeld de Wiza D, Akhyari P, Ruige JB and Ouwens DM: Secretory products from epicardial adipose tissue from patients with type 2 diabetes impair mitochondrial β-oxidation in cardiomyocytes via activation of the cardiac renin-angiotensin system and induction of miR-208a. Basic Res Cardiol. 112:22017. View Article : Google Scholar : PubMed/NCBI | |
Marchand A, Atassi F, Mougenot N, Clergue M, Codoni V, Berthuin J, Proust C, Trégouët DA, Hulot JS and Lompré AM: miR-322 regulates insulin signaling pathway and protects against metabolic syndrome-induced cardiac dysfunction in mice. Biochim Biophys Acta. 1862:611–621. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhong C, Wang K, Liu Y, Lv D, Zheng B, Zhou Q, Sun Q, Chen P, Ding S, Xu Y and Huang H: miR-19b controls cardiac fibroblast proliferation and migration. J Cell Mol Med. 20:1191–1197. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pan L, Huang BJ, Ma XE, Wang SY, Feng J, Lv F, Liu Y, Liu Y, Li CM, Liang DD, et al: MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter. Int J Mol Sci. 16:5420–5433. 2015. View Article : Google Scholar : PubMed/NCBI | |
Das S, Kohr M, Dunkerly-Eyring B, Lee DI, Bedja D, Kent OA, Leung AK, Henao-Mejia J, Flavell RA and Steenbergen C: Divergent effects of miR-181 family members on myocardial function through protective cytosolic and detrimental mitochondrial microRNA targets. J Am Heart Assoc. 6(pii): e0046942017.PubMed/NCBI | |
Palomer X, Capdevila-Busquets E, Botteri G, Davidson MM, Rodríguez C, Martínez-González J, Vidal F, Barroso E, Chan TO, Feldman AM, et al: miR-146a targets Fos expression in human cardiac cells. Dis Model Mech. 8:1081–1091. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khamaneh AM, Alipour MR, Sheikhzadeh Hesari F and Ghadiri Soufi F: A signature of microRNA-155 in the pathogenesis of diabetic complications. J Physiol Biochem. 71:301–309. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Chen H, Hu Y, Li Q, Hu Z, Ma T and Mao X: Burkholderia pseudomallei-derived miR-3473 enhances NF-κB via targeting TRAF3 and is associated with different inflammatory responses compared to Burkholderia thailandensis in murine macrophages. BMC Microbiol. 16:2832016. View Article : Google Scholar : PubMed/NCBI | |
Kuwabara Y, Horie T, Baba O, Watanabe S, Nishiga M, Usami S, Izuhara M, Nakao T, Nishino T, Otsu K, et al: MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK Pathway. Circ Res. 116:279–288. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cohen-Solal A, Beauvais F and Logeart D: Heart failure and diabetes mellitus: Epidemiology and management of an alarming association. J Card Fail. 14:615–625. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nargesi AA, Esteghamati S, Heidari B, Hafezi-Nejad N, Sheikhbahaei S, Pajouhi A, Nakhjavani M and Esteghamati A: Nonlinear relation between pulse pressure and coronary heart disease in patients with type 2 diabetes or hypertension. J Hypertens. 34:974–980. 2016. View Article : Google Scholar : PubMed/NCBI | |
Puntmann VO, Carr-White G, Jabbour A, Yu CY, Gebker R, Kelle S, Hinojar R, Doltra A, Varma N, Child N, et al: T1-mapping and outcome in nonischemic cardiomyopathy: All-cause mortality and heart failure. JACC Cardiovasc Imaging. 9:40–50. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cahill TJ, Ashrafian H and Watkins H: Genetic cardiomyopathies causing heart failure. Circ Res. 113:660–675. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ortega A, Roselló-Lletí E, Tarazón E, Molina-Navarro MM, Martínez-Dolz L, González-Juanatey JR, Lago F, Montoro-Mateos JD, Salvador A, Rivera M and Portolés M: Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy. PLoS One. 9:e1076352014. View Article : Google Scholar : PubMed/NCBI | |
Yeung F, Chung E, Guess MG, Bell ML and Leinwand LA: Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos. Nucleic Acids Res. 40:7303–7318. 2012. View Article : Google Scholar : PubMed/NCBI | |
Abraityte A, Lunde IG, Askevold ET, Michelsen AE, Christensen G, Aukrust P, Yndestad A, Fiane A, Andreassen A, Aakhus S, et al: Wnt5a is associated with rightventricular dysfunction and adverse outcome in dilated cardiomyopathy. Sci Rep. 7:34902017. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto S, Yang G, Zablocki D, Liu J, Hong C, Kim SJ, Soler S, Odashima M, Thaisz J, Yehia G, et al: Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. J Clin Invest. 111:1463–1474. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Kanter EM and Yamada KA: Remodeling of cardiac fibroblasts following myocardial infarction results in increased gap junction intercellular communication. Cardiovasc Pathol. 19:e233–e240. 2010. View Article : Google Scholar : PubMed/NCBI | |
Naga Prasad SV, Gupta MK, Duan ZH, Surampudi VS, Liu CG, Kotwal A, Moravec CS, Starling RC, Perez DM, Sen S, et al: A unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. PLoS One. 12:e01704562017. View Article : Google Scholar : PubMed/NCBI | |
Enes C, oşkun M, Kervancıoğlu M, Öztuzcu S, Yılmaz Coşkun F, Ergün S, Başpınar O, Kılınç M, Temel L and Coşkun MY: Plasma microRNA profiling of children with idiopathic dilated cardiomyopathy. Biomarkers. 21:56–61. 2016. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto SD, Karimpour-Fard A, Peterson V, Auerbach SR, Stenmark KR, Stauffer BL and Sucharov CC: Circulating microRNA as a biomarker for recovery in pediatric dilated cardiomyopathy. J Heart Lung Transplant. 34:724–733. 2015. View Article : Google Scholar : PubMed/NCBI | |
Leger KJ, Singh S, Canseco D, VonGrote EC, Karim-Ud-Din S, Collins SC, Thibodeau JT, Mishkin JD, Patel PC, Markham DW, et al: Abstract 13120: Identification of novel circulating microRNAs in ischemic cardiomyopathy utilizing whole blood microRNA profiling. Circulation. 128 Suppl 22:A131202013. | |
Zeng X, Li X and Wen H: Expression of circulating microRNA-182, CITED2 and HIF-1 in ischemic cardiomyopathy and their correlation. J Clin Cardiol. 33:119–122. 2017.(In Chinese). | |
Olson E and Rooij EV: Dual targeting of miR-208 and miR-499 in the treatment of cardiac disorders. US Patent 14104886. Filed December 12, 2013; issued. June 26–2014. | |
Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M, et al: Circulating microRNAs in patients with coronary artery disease. Circ Res. 107:677–684. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li X, Liu CY, Li YS, Xu J, Li DG, Li X and Han D: Deep RNA sequencing elucidates microRNA-regulated molecular pathways in ischemic cardiomyopathy and nonischemic cardiomyopathy. Genet Mol Res. 15:gmr74652016. | |
Phelan D, Watson C, Martos R, Collier P, Patle A, Donnelly S, Ledwidge M, Baugh J and McDonald K: Modest elevation in BNP in asymptomatic hypertensive patients reflects sub-clinical cardiac remodeling, inflammation and extracellular matrix changes. PLoS One. 7:e492592012. View Article : Google Scholar : PubMed/NCBI | |
Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ and Redfield MM: Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 131:550–559. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shyu KG, Wang BW, Cheng WP and Lo HM: MicroRNA-208a increases myocardial endoglin expression and myocardial fibrosis in acute myocardial infarction. Can J Cardiol. 31:679–690. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cengiz M, Karatas OF, Koparir E, Yavuzer S, Ali C, Yavuzer H, Kirat E, Karter Y and Ozen M: Differential expression of hypertension-associated microRNAs in the plasma of patients with white coat hypertension. Medicine (Baltimore). 94:e6932015. View Article : Google Scholar : PubMed/NCBI | |
Fu M, Gao Y, Zhou Q, Zhang Q, Peng Y, Tian K, Wang J and Zheng X: Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. Gene. 536:272–278. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stern-Ginossar N, Saleh N, Goldberg MD, Prichard M, Wolf DG and Mandelboim O: Analysis of human cytomegalovirus-encoded microRNA activity during infection. J Virol. 83:10684–10693. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, Ma X, Lau WB, Rong R, Yu X, et al: Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation. 124:175–184. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ding M, Wang X, Wang C, Liu X, Zen K, Wang W, Zhang CY and Zhang C: Distinct expression profile of HCMV encoded miRNAs in plasma from oral lichen planus patients. J Transl Med. 15:1332017. View Article : Google Scholar : PubMed/NCBI | |
Kellawan JM, Johansson RE, Harrell JW, Sebranek JJ, Walker BJ, Eldridge MW and Schrage WG: Exercise vasodilation is greater in women: Contributions of nitric oxide synthase and cyclooxygenase. Eur J Appl Physiol. 115:1735–1746. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dolcino M, Puccetti A, Barbieri A, Bason C, Tinazzi E, Ottria A, Patuzzo G, Martinelli N and Lunardi C: Infections and autoimmunity: Role of human cytomegalovirus in autoimmune endothelial cell damage. Lupus. 24:419–432. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI and Vardas PE: MiR-1, miR-9 and miR-126 levels in peripheral blood mononuclear cells of patients with essential hypertension associate with prognostic indices of ambulatory blood pressure monitoring. Eur Heart J. 34 Suppl 1:S51582013. View Article : Google Scholar | |
Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI and Vardas PE: Mir-143/mir-145 levels in peripheral blood mononuclear cells associate with ambulatory blood pressure monitoring parameters in patients with essential hypertension. Eur Heart J. 34 Suppl 1:S56562013. View Article : Google Scholar | |
Dickinson BA, Semus HM, Montgomery RL, Stack C, Latimer PA, Lewton SM, Lynch JM, Hullinger TG, Seto AG and van Rooij E: Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure. Eur J Heart Fail. 15:650–659. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hou YL, LI SL and Liu LL: Effects of MicroRNA-137 and AngII on cardiac remodeling in spontaneously hypertensive rats. Chin J Comp Med. 7–2016.(In Chinese). | |
Li JZ, Tang XN, Li TT, Liu LJ, Yu SY, Zhou GY, Shao QR, Sun HP, Wu C and Yang Y: Paeoniflorin inhibits doxorubicin-induced cardiomyocyte apoptosis by downregulating microRNA-1 expression. Exp Ther Med. 11:2407–2412. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Jia C, Wang P, Xiong M, Cui J, Li L, Wang W, Wu Q, Chen Y and Zhang T: MicroRNA-505 identified from patients with essential hypertension impairs endothelial cell migration and tube formation. Int J Cardiol. 177:925–934. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wu H, Zhu M, Shelat H, Qu J, Zheng M, Yuan J, Yuan G, Xu J, Wang H and Geng YJ: Insulin-like growth factor prevents diabetes induced cardiomyopathy mediated by MICRORNA-1. J Am College Cardiol. 55:A21.E1962010. View Article : Google Scholar | |
Finn NA, Eapen D, Manocha P, Al Kassem H, Lassegue B, Ghasemzadeh N, Quyyumi A and Searles CD: Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport. FEBS Lett. 587:3456–3463. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dickstein K: Is substantial renal dysfunction in patients with heart failure no longer a contraindication for RAS inhibition? The power of a large, high-quality registry to illuminate major clinical issues. Eur Heart J. 36:2279–2280. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shang F, Wang SC, Hsu CY, Miao Y, Martin M, Yin Y, Wu CC, Wang YT, Wu G, Chien S, et al: MicroRNA-92a mediates endothelial dysfunction in CKD. J Am Soc Nephrol. 28:3251–3261. 2017. View Article : Google Scholar : PubMed/NCBI | |
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Fan F, Cao Q, Shen C, Zhu H, Wang P, Zhao X, Sun X, Dong Z, Ma X, et al: Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice. J Mol Med (Berl). 94:1229–1240. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wong AK, AlZadjali MA, Choy AM and Lang CC: Insulin resistance: A potential new target for therapy in patients with heart failure. Cardiovasc Ther. 26:203–213. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yu XY, Song YH, Geng YJ, Lin QX, Shan ZX, Lin SG and Li Y: Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun. 376:548–552. 2008. View Article : Google Scholar : PubMed/NCBI | |
Horie T, Ono K, Nishi H, Iwanaga Y, Nagao K, Kinoshita M, Kuwabara Y, Takanabe R, Hasegawa K, Kita T and Kimura T: MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun. 389:315–320. 2009. View Article : Google Scholar : PubMed/NCBI | |
Latronico MV, Catalucci D and Condorelli G: Emerging role of microRNAs in cardiovascular biology. Circ Res. 101:1225–1236. 2007. View Article : Google Scholar : PubMed/NCBI | |
Greco S, Fasanaro P, Castelvecchio S, D'Alessandra Y, Arcelli D, Di Donato M, Malavazos A, Capogrossi MC, Menicanti L and Martelli F: MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes. 61:1633–1641. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nandi SS, Duryee MJ, Shahshahan HR, Thiele GM, Anderson DR and Mishra PK: Induction of autophagy markers is associated with attenuation of miR-133a in diabetic heart failure patients undergoing mechanical unloading. Am J Transl Res. 7:683–696. 2015.PubMed/NCBI | |
Deng X, Liu Y, Luo M and Wu J, Ma R, Wan Q and Wu J: Circulating miRNA-24 and its target YKL-40 as potential biomarkers in patients with coronary heart disease and type 2 diabetes mellitus. Oncotarget. 8:63038–63046. 2017.PubMed/NCBI | |
Chavali V, Tyagi SC and Mishra PK: Differential expression of dicer, miRNAs, and inflammatory markers in diabetic Ins2+/− Akita hearts. Cell Biochem Biophys. 68:25–35. 2014. View Article : Google Scholar : PubMed/NCBI | |
Izarra A, Moscoso I, Cañón S, Carreiro C, Fondevila D, Martín-Caballero J, Blanca V, Valiente I, Díez-Juan A and Bernad A: miRNA-1 and miRNA-133a are involved in early commitment of pluripotent stem cells and demonstrate antagonistic roles in the regulation of cardiac differentiation. J Tissue Eng Regen Med. 11:787–799. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Yang L, Chen KH, Sun HY, Jin MW, Xiao GS, Wang Y and Li GR: SKF-96365 blocks human ether-à-go-go-related gene potassium channels stably expressed in HEK 293 cells. Pharmacol Res. 104:61–69. 2016. View Article : Google Scholar : PubMed/NCBI | |
van Solingen C, Bijkerk R, de Boer HC, Rabelink TJ and van Zonneveld AJ: The Role of microRNA-126 in vascular homeostasis. Curr Vasc Pharmacol. 13:341–351. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M, et al: Circulating microRNAs in patients with coronary artery disease. Circ Res. 107:677–684. 2010. View Article : Google Scholar : PubMed/NCBI | |
Škrha P, Hajer J, Anděl M, Hořínek A and Korabečná M: miRNA as a new marker of diabetes mellitus and pancreatic carcinoma progression. Cas Lek Cesk. 154:122–126. 2015.(In Czech). PubMed/NCBI | |
Talmud PJ: How to identify gene-environment interactions in a multifactorial disease: CHD as an example. Proc Nutr Soc. 63:5–10. 2004. View Article : Google Scholar : PubMed/NCBI | |
Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, et al: MicroRNA-133 controls cardiac hypertrophy. Nat Med. 13:613–618. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Tian D, Hu J, Xing H, Sun M, Wang J, Jian Q and Yang H: MiRNA-145 regulates the development of congenital heart disease through targeting FXN. Pediatr Cardiol. 37:629–636. 2016. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Niu LL, Wei W, Zhang WY, Li XY, Cao JH and Zhao SH: A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis. 4:e9342013. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R and Olson EN: microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22:3242–3254. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shan ZX, Lin QX, Deng CY, Zhou ZL, Zhang XC, Fu YH and Yu XY: Plasmid-mediated miRNA-1-2 specifically inhibits Hand2 protein expression in H9C2 cells. Nan Fang Yi Ke Da Xue Xue Bao. 28:1559–1561. 2008.(In Chinese). PubMed/NCBI | |
Mukai N, Nakayama Y, Murakami S, Tanahashi T, Sessler DI, Ishii S, Ogawa S, Tokuhira N, Mizobe T, Sawa T and Nakajima Y: Potential contribution of erythrocyte microRNA to secondary erythrocytosis and thrombocytopenia in congenital heart disease. Pediatr Res. 83:866–873. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Samal E and Srivastava D: Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 436:214–220. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lu CX, Gong HR, Liu XY, Wang J, Zhao CM, Huang RT, Xue S and Yang YQ: A novel HAND2 loss-of-function mutation responsible for tetralogy of Fallot. Int J Mol Med. 37:445–451. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ferreira LR, Frade AF, Santos RH, Teixeira PC, Baron MA, Navarro IC, Benvenuti LA, Fiorelli AI, Bocchi EA, Stolf NA, et al: MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in chronic chagas disease cardiomyopathy. Int J Cardiol. 175:409–417. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen W and Li S: Circulating microRNA as a novel biomarker for pulmonary arterial hypertension due to congenital heart disease. Pediatr Cardiol. 38:86–94. 2017. View Article : Google Scholar : PubMed/NCBI | |
Patrick DM, Montgomery RL, Qi X, Obad S, Kauppinen S, Hill JA, van Rooij E and Olson EN: Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest. 120:3912–3916. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Gu J, Roth JA, Hildebrandt MA, Lippman SM, Ye Y, Minna JD and Wu X: Pathway-based serum microRNA profiling and survival in patients with advanced-stage non-small cell lung cancer. Cancer Res. 73:4801–4809. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hamam R, Hamam D, Alsaleh KA, Kassem M, Zaher W, Alfayez M, Aldahmash A and Alajez NM: Circulating microRNAs in breast cancer: Novel diagnostic and prognostic biomarkers. Cell Death Dis. 8:e30452017. View Article : Google Scholar : PubMed/NCBI | |
Duttagupta R, Jiang R, Gollub J, Getts RC and Jones KW: Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLos One. 6:e207692011. View Article : Google Scholar : PubMed/NCBI | |
Sassi Y, Avramopoulos P, Ramanujam D, Grüter L, Werfel S, Giosele S, Brunner AD, Esfandyari D, Papadopoulou AS, De Strooper B, et al: Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nat Commun. 8:16142017. View Article : Google Scholar : PubMed/NCBI |