1
|
Villar J, Say L, Gülmezoglu A, Merialdi M,
Lindheimer MD, Betran AP and Piaggio G: Eclampsia and
Pre-Eclampsia: A worldwide health problem for 2000 years.
Pre-Eclampsia. Critchley H, Maclean A, Poston L and Walker J: RCOG
Press; London: pp. 189–207. 2003
|
2
|
Al-Jameil N, Aziz Khan F, Fareed Khan M
and Tabassum H: A brief overview of preeclampsia. J Clin Med Res.
6:1–7. 2014.PubMed/NCBI
|
3
|
Kenny LC, Black MA, Poston L, Taylor R,
Myers JE, Baker PN, McCowan LM, Simpson NAB, Dekker GA, Roberts CT,
et al: Early pregnancy prediction of preeclampsia in nulliparous
women, combining clinical risk and biomarkers: The Screening for
Pregnancy Endpoints (SCOPE) international cohort study.
Hypertension. 64:644–652. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Myatt L, Redman CW, Staff AC, Hansson S,
Wilson ML, Laivuori H, Poston L, Roberts JM and Colaboratory GP;
Global Pregnancy CoLaboratory, : Strategy for standardization of
preeclampsia research study design. Hypertension. 63:1293–1301.
2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Redman CWG and Sargent IL: Immunology of
pre-eclampsia. Am J Reprod Immunol. 63:534–543. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Eiland E, Nzerue C and Faulkner M:
Preeclampsia 2012. J Pregnancy. 2012:5865782012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yong HE, Melton PE, Johnson MP, Freed KA,
Kalionis B, Murthi P, Brennecke SP, Keogh RJ and Moses EK:
Genome-wide transcriptome directed pathway analysis of maternal
preeclampsia susceptibility genes. PLoS One. 10:e01282302015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Long W, Shi Z, Fan S, Liu L, Lu Y, Guo X,
Rong C, Cui X and Ding H: Association of maternal KIR and fetal
HLA-C genes with the risk of preeclampsia in the Chinese Han
population. Placenta. 36:433–437. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Grill S, Rusterholz C, Zanetti-Dällenbach
R, Tercanli S, Holzgreve W, Hahn S and Lapaire O: Potential markers
of preeclampsia - A review. Reprod Biol Endocrinol. 7:702009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Bi D, Ning H, Liu S, Que X and Ding K:
Gene expression patterns combined with network analysis identify
hub genes associated with bladder cancer. Comput Biol Chem.
56:71–83. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li Y, Agarwal P and Rajagopalan D: A
global pathway crosstalk network. Bioinformatics. 24:1442–1447.
2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Doniger SW, Salomonis N, Dahlquist KD,
Vranizan K, Lawlor SC and Conklin BR: MAPPFinder: Using Gene
Ontology and GenMAPP to create a global gene-expression profile
from microarray data. Genome Biol. 4:R72003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Dawson JA and Kendziorski C: An empirical
Bayesian approach for identifying differential coexpression in
high-throughput experiments. Biometrics. 68:455–465. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Herse F, Dechend R, Harsem NK, Wallukat G,
Janke J, Qadri F, Hering L, Muller DN, Luft FC and Staff AC:
Dysregulation of the circulating and tissue-based renin-angiotensin
system in preeclampsia. Hypertension. 49:604–611. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Textoris J, Ivorra D, Ben Amara A,
Sabatier F, Ménard JP, Heckenroth H, Bretelle F and Mege JL:
Evaluation of current and new biomarkers in severe preeclampsia: A
microarray approach reveals the VSIG4 gene as a potential blood
biomarker. PLoS One. 8:e82638. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Taminau J, Meganck S and Lazar C: Using
the inSilicoMerging package. https://bioc.ism.ac.jp/packages/2.11/bioc/vignettes/inSilicoMerging/inst/doc/inSilicoMerging.pdf
|
17
|
Irizarry RA, Bolstad BM, Collin F, Cope
LM, Hobbs B and Speed TP: Summaries of Affymetrix GeneChip probe
level data. Nucleic Acids Res. 31:e15. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bolstad BM, Irizarry RA, Astrand M and
Speed TP: A comparison of normalization methods for high density
oligonucleotide array data based on variance and bias.
Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bolstad B: Affy: Built-in processing
methods. 2003.https://users.soe.ucsc.edu/~leslie/MOUSE/chucktest/src/affy/doc/builtinMethods.pdf
|
20
|
Allen JD, Wang S, Chen M, Girard L, Minna
JD, Xie Y and Xiao G: Probe mapping across multiple microarray
platforms. Brief Bioinform. 13:547–54. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Croft D, Mundo AF, Haw R, Milacic M,
Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, et al:
The Reactome pathway knowledgebase. Nucleic Acids Res.
42:D472–D477. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ahn T, Lee E, Huh N and Park T:
Personalized identification of altered pathways in cancer using
accumulated normal tissue data. Bioinformatics. 30:i422–i429. 2014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Szklarczyk D, Franceschini A, Wyder S,
Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A
and Tsafou KP: STRING v10: Protein-protein interaction networks,
integrated over the tree of life. Nucleic Acids Res. 43:D447–D452.
2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu KQ, Liu ZP, Hao JK, Chen L and Zhao
XM: Identifying dysregulated pathways in cancers from pathway
interaction networks. BMC Bioinformatics. 13:1262012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Haynes W: Student's t-test. Encyclopedia
of Systems Biology. Dubitzky W, Wolkenhauer O, Cho KH and Yokota H:
Springer; New York, NY: 2013, View Article : Google Scholar
|
26
|
Nahler G: Pearson correlation coefficient.
Dictionary of Pharmaceutical Medicine. Springer; Vienna: pp.
1322009, View Article : Google Scholar
|
27
|
Bro R and Smilde AK: Principal component
analysis. Anal Methods. 6:2812–2831. 2014. View Article : Google Scholar
|
28
|
Chang C-C and Lin C-J: Libsvm: A library
for support vector machines. ACM Trans Intell Syst Technol.
2:272011. View Article : Google Scholar
|
29
|
Huang J and Ling CX: Using auc and
accuracy in evaluating learning algorithms, knowledge and data
engineering. IEEE T Knowl Data En. 17:299–310. 2005. View Article : Google Scholar
|
30
|
Rojatkar DV, Chinchkhede KD and Sarate GG:
Handwritten Devnagari consonants recognition using MLPNN with five
fold cross validation. International Conference on Circuits, Power
and Computing Technologies. IEEE; Nagercoil, India: pp. 1222–1226.
2013
|
31
|
Glazko GV and Emmert-Streib F: Unite and
conquer: Univariate and multivariate approaches for finding
differentially expressed gene sets. Bioinformatics. 25:2348–2354.
2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Khatri P, Sirota M and Butte AJ: Ten years
of pathway analysis: Current approaches and outstanding challenges.
PLOS Comput Biol. 8:e10023752012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Donato M, Xu Z, Tomoiaga A, Granneman JG,
Mackenzie RG, Bao R, Than NG, Westfall PH, Romero R and Draghici S:
Analysis and correction of crosstalk effects in pathway analysis.
Genome Res. 23:1885–1893. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bradley EW, Ruan MM, Vrable A and Oursler
MJ: Pathway crosstalk between Ras/Raf and PI3K in promotion of
M-CSF-induced MEK/ERK-mediated osteoclast survival. J Cell Biochem.
104:1439–1451. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu Z-P, Wang Y, Zhang X-S and Chen L:
Network-based analysis of complex diseases. IET Systems Biology.
6:22–33. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Barabási AL and Oltvai ZN: Network
biology: Understanding the cell's functional organization. Nat Rev
Genet. 5:101–113. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tong AHY, Lesage G, Bader GD, Ding H, Xu
H, Xin X, Young J, Berriz GF, Brost RL, Chang M, et al: Global
mapping of the yeast genetic interaction network. Science.
303:808–813. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kelley R and Ideker T: Systematic
interpretation of genetic interactions using protein networks. Nat
Biotechnol. 23:561–566. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Nasirudeen AM, Wong HH, Thien P, Xu S, Lam
KP and Liu DX: RIG-I, MDA5 and TLR3 synergistically play an
important role in restriction of dengue virus infection. PLoS Negl
Trop Dis. 5:e9262011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Broquet AH, Hirata Y, McAllister CS and
Kagnoff MF: RIG-I/MDA5/MAVS are required to signal a protective IFN
response in rotavirus-infected intestinal epithelium. J Immunol.
186:1618–1626. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chatterjee P, Weaver LE, Chiasson VL,
Young KJ and Mitchell BM: Do double-stranded RNA receptors play a
role in preeclampsia? Placenta. 32:201–205. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang D, Xia D and Dubois RN: The crosstalk
of PTGS2 and EGF signaling pathways in colorectal cancer. Cancers
(Basel). 3:3894–3908. 2011. View Article : Google Scholar : PubMed/NCBI
|