1
|
Alotaibi A, Perry L, Gholizadeh L and
Al-Ganmi A: Incidence and prevalence rates of diabetes mellitus in
Saudi Arabia: An overview. J Epidemiol Glob Health. 7:211–218.
2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mrozikiewicz-Rakowska B, Łukawska M,
Nehring P, Szymański K, Sobczyk-Kopcioł A, Krzyżewska M, Maroszek
P, Płoski R and Czupryniak L: Genetic predictors associated with
diabetic retinopathy in patients with diabetic foot. Pol Arch
Intern Med. 128:35–42. 2018.PubMed/NCBI
|
3
|
Tan GS, Cheung N, Simó R, Cheung GC and
Wong TY: Diabetic macular oedema. Lancet Diabetes Endocrinol.
5:143–155. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tolentino MS, Tolentino AJ and Tolentino
MJ: Current and investigational drugs for the treatment of diabetic
retinopathy. Expert Opin Investig Drugs. 25:1011–1022. 2016.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Brownlee M, Aiello LP, Cooper ME, Vinik
AI, Plutzky J and Boulton AJ: Complications of diabetes mellitus.
In Williams Textbook of Endocrinology (Thirteenth Edition)
Elsevier. 1484–1581. 2017.
|
6
|
Happich M, Breitscheidel L, Meisinger C,
Ulbig M, Falkenstein P, Benter U and Watkins J: Cross-sectional
analysis of adult diabetes type 1 and type 2 patients with diabetic
microvascular complications from a German retrospective
observational study. Curr Med Res Opin. 23:1367–1374. 2007.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Brownlee M: Biochemistry and molecular
cell biology of diabetic complications. Nature. 414:813–820. 2001.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Ramasamy R, Vannucci SJ, Yan SS, Herold K,
Yan SF and Schmidt AM: Advanced glycation end products and RAGE: A
common thread in aging, diabetes, neurodegeneration, and
inflammation. Glycobiology. 15:16R–28R. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Katakura Y, Totsuka M, Imabayashi E,
Matsuda H and Hisatsune T: Anserine/carnosine supplementation
suppresses the expression of the inflammatory chemokine CCL24 in
peripheral blood mononuclear cells from elderly people. Nutrients.
9:E11992017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cripps MJ, Hanna K, Lavilla C Jr, Sayers
SR, Caton PW, Sims C, De Girolamo L, Sale C and Turner MD:
Carnosine scavenging of glucolipotoxic free radicals enhances
insulin secretion and glucose uptake. Sci Rep. 7:133132017.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Baye E, Ukropcova B, Ukropec J, Hipkiss A,
Aldini G and de Courten B: Physiological and therapeutic effects of
carnosine on cardiometabolic risk and disease. Amino Acids.
48:1131–1149. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tan RR, Li YF, Zhang SJ, Huang WS, Tsoi B,
Hu D, Wan X, Yang X, Wang Q, Kurihara H and He RR: Abnormal
O-GlcNAcylation of Pax3 occurring from hyperglycemia-induced neural
tube defects is ameliorated by carnosine but not folic acid in
chicken embryos. Mol Neurobiol. 54:281–294. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li YF, He RR, Tsoi B, Li XD, Li WX, Abe K
and Kurihara H: Anti-stress effects of carnosine on
restraint-evoked immunocompromise in mice through spleen lymphocyte
number maintenance. PLoS One. 7:e331902012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Albrecht T, Schilperoort M, Zhang S, Braun
JD, Qiu J, Rodriguez A, Pastene DO, Krämer BK, Köppel H, Baelde H,
et al: Carnosine attenuates the development of both type 2 diabetes
and diabetic nephropathy in BTBR ob/ob mice. Sci Rep. 7:444922017.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Javadi S, Yousefi R, Hosseinkhani S,
Tamaddon AM and Uversky VN: Protective effects of carnosine on
dehydroascorbate-induced structural alteration and opacity of lens
crystallins: Important implications of carnosine pleiotropic
functions to combat cataractogenesis. J Biomol Struct Dyn.
35:1766–1784. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Klein BE: Overview of epidemiologic
studies of diabetic retinopathy. Ophthalmic Epidemiol. 14:179–183.
2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Coleman SK, Rebalka IA, D'Souza DM and
Hawke TJ: Skeletal muscle as a therapeutic target for delaying type
1 diabetic complications. World J Diabetes. 6:1323–1336. 2015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Cargnello M and Roux PP: Activation and
function of the MAPKs and their substrates, the MAPK-activated
protein kinases. Microbiol Mol Biol Rev. 75:50–83. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pearson G, Robinson F, Beers Gibson T, Xu
BE, Karandikar M, Berman K and Cobb MH: Mitogen-activated protein
(MAP) kinase pathways: Regulation and physiological functions.
Endocr Rev. 22:153–183. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cervellini I, Galino J, Zhu N, Allen S,
Birchmeier C and Bennett DL: Sustained MAPK/ERK activation in adult
schwann cells impairs nerve repair. J Neurosci. 38:679–690. 2018.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Danquah A, de Zelicourt A, Colcombet J and
Hirt H: The role of ABA and MAPK signaling pathways in plant
abiotic stress responses. Biotechnol Adv. 32:40–52. 2014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Hirata K and Kubo K: Relationship between
blood levels of N-carboxymethyl-lysine and pentosidine and the
severity of microangiopathy in type 2 diabetes. Endocr J.
51:537–544. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Schaaf G, Dynowski M, Mousley CJ, Shah SD,
Yuan P, Winklbauer EM, de Campos MK, Trettin K, Quinones MC,
Smirnova TI, et al: Resurrection of a functional
phosphatidylinositol transfer protein from a pseudo-Sec14 scaffold
by directed evolution. Mol Biol Cell. 22:892–905. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Maas M, Wang R, Paddock C, Kotamraju S,
Kalyanaraman B, Newman PJ and Newman DK: Reactive oxygen species
induce reversible PECAM-1 tyrosine phosphorylation and SHP-2
binding. Am J Physiol Heart Circ Physiol. 285:H2336–H2344. 2003.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Grishagin IV: Automatic cell counting with
ImageJ. Anal Biochem. 473:63–65. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mao L, Wang H, Ma F, Guo Z, He H, Zhou H
and Wang N: Exposure to static magnetic fields increases insulin
secretion in rat INS-1 cells by activating the transcription of the
insulin gene and up-regulating the expression of vesicle-secreted
proteins. Int J Radiat Biol. 93:831–840. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Liao XH, Wang N, Liu QX, Qin T, Cao B, Cao
DS and Zhang TC: Myocardin-related transcription factor-A induces
cardiomyocyte hypertrophy. IUBMB Life. 63:54–61. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
DeLisser HM, Newman PJ and Albelda SM:
Molecular and functional aspects of PECAM-1/CD31. Immunol Today.
15:490–495. 1994. View Article : Google Scholar : PubMed/NCBI
|
30
|
Aydın AF, Bingül İ, Küçükgergin C,
Doğan-Ekici I, Doğru Abbasoğlu S and Uysal M: Carnosine decreased
oxidation and glycation products in serum and liver of high-fat
diet and low-dose streptozotocin-induced diabetic rats. Int J Exp
Pathol. 98:278–288. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Goldin A, Beckman JA, Schmidt AM and
Creager MA: Advanced glycation end products: Sparking the
development of diabetic vascular injury. Circulation. 114:597–605.
2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hendrick AM, Gibson MV and Kulshreshtha A:
Diabetic retinopathy. Prim Care. 42:451–464. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pfister F, Riedl E, Wang Q, vom Hagen F,
Deinzer M, Harmsen MC, Molema G, Yard B, Feng Y and Hammes HP: Oral
carnosine supplementation prevents vascular damage in experimental
diabetic retinopathy. Cell Physiol Biochem. 28:125–136. 2011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang L, Zhang ZK and Liang S:
Epigallocatechin-3-gallate protects retinal vascular endothelial
cells from high glucose stress in vitro via the MAPK/ERK-VEGF
pathway. Genet Mol Res. 15:2016.
|
35
|
Hu L, Zhang Y, Chen L, Zhou W, Wang Y and
Wen J: MAPK and ERK polymorphisms are associated with PCOS risk in
Chinese women. Oncotarget. 8:100261–100268. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Gogg S, Smith U and Jansson PA: Increased
MAPK activation and impaired insulin signaling in subcutaneous
microvascular endothelial cells in type 2 diabetes: The role of
endothelin-1. Diabetes. 58:2238–2245. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Aguirre V, Werner ED, Giraud J, Lee YH,
Shoelson SE and White MF: Phosphorylation of Ser307 in insulin
receptor substrate-1 blocks interactions with the insulin receptor
and inhibits insulin action. J Biol Chem. 277:1531–1537. 2002.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Carlson CJ, Koterski S, Sciotti RJ,
Poccard GB and Rondinone CM: Enhanced basal activation of
mitogen-activated protein kinases in adipocytes from type 2
diabetes: Potential role of p38 in the downregulation of GLUT4
expression. Diabetes. 52:634–641. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Rondinone CM, Wang LM, Lonnroth P, Wesslau
C, Pierce JH and Smith U: Insulin receptor substrate (IRS) 1 is
reduced and IRS-2 is the main docking protein for
phosphatidylinositol 3-kinase in adipocytes from subjects with
non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA.
94:4171–4175. 1997. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ulbrich F, Kaufmann KB, Coburn M, Lagrèze
WA, Roesslein M, Biermann J, Buerkle H, Loop T and Goebel U:
Neuroprotective effects of Argon are mediated via an ERK-1/2
dependent regulation of heme-oxygenase-1 in retinal ganglion cells.
J Neurochem. 134:717–727. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Marra C, Gomes Moret D, de Souza Corrêa A,
Chagas da Silva F, Moraes P, Linden R and Sholl-Franco A: Protein
kinases JAK and ERK mediate protective effect of interleukin-2 upon
ganglion cells of the developing rat retina. J Neuroimmunol.
233:120–126. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
LoRusso PM, Krishnamurthi SS, Rinehart JJ,
Nabell LM, Malburg L, Chapman PB, DePrimo SE, Bentivegna S, Wilner
KD, Tan W and Ricart AD: Phase I pharmacokinetic and
pharmacodynamic study of the oral MAPK/ERK kinase inhibitor
PD-0325901 in patients with advanced cancers. Clin Cancer Res.
16:1924–1937. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
van Dijk EH, Duits DE, Versluis M, Luyten
GP, Bergen AA, Kapiteijn EW, de Lange MJ, Boon CJ and van der
Velden PA: Loss of MAPK pathway activation in post-mitotic retinal
cells as mechanism in MEK inhibition-related retinopathy in cancer
patients. Medicine (Baltimore). 95:e34572016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wautier JL and Guillausseau PJ: Advanced
glycation end products, their receptors and diabetic angiopathy.
Diabetes Metab. 27:535–542. 2001.PubMed/NCBI
|
45
|
Genuth S, Sun W, Cleary P, Sell DR, Dahms
W, Malone J, Sivitz W, Monnier VM and DCCT Skin Collagen Ancillary
Study Group: Glycation and carboxymethyllysine levels in skin
collagen predict the risk of future 10-year progression of diabetic
retinopathy and nephropathy in the diabetes control and
complications trial and epidemiology of diabetes interventions and
complications participants with type 1 diabetes. Diabetes.
54:3103–3111. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Xu T, Wang NS, Fu LL, Ye CY, Yu SQ and Mei
CL: Celecoxib inhibits growth of human autosomal dominant
polycystic kidney cyst-lining epithelial cells through the
VEGF/Raf/MAPK/ERK signaling pathway. Mol Biol Rep. 39:7743–7753.
2012. View Article : Google Scholar : PubMed/NCBI
|