1
|
Shao J, Choudhary MM and Schachat AP:
Neovascular age-related macular degeneration. Dev Ophthalmol.
55:125–136. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wong TY, Ferreira A, Hughes R, Carter G
and Mitchell P: Epidemiology and disease burden of pathologic
myopia and myopic choroidal neovascularization: An evidence-based
systematic review. Am J Ophthalmol. 157:9–25.e12. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Blinder KJ, Bradley S, Bressler NM,
Bressler SB, Donati G, Hao Y, Ma C, Menchini U, Miller J, Potter
MJ, et al: Effect of lesion size, visual acuity, and lesion
composition on visual acuity change with and without verteporfin
therapy for choroidal neovascularization secondary to age-related
macular degeneration: TAP and VIP report no.1. Am J Ophthalmol.
136:407–418. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
D'Amico DJ, Goldberg MF, Hudson H, Jerdan
JA, Krueger S, Luna S, Robertson SM, Russell S, Singerman L,
Slakter JS, et al: Anecortave acetate as monotherapy for the
treatment of subfoveal lesions in patients with exudative
age-related macular degeneration (AMD): Interim (month 6) analysis
of clinical safety and efficacy. Retina. 23:14–23. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sakamoto T, Ishibashi T, Kimura H,
Yoshikawa H, Spee C, Harris MS, Hinton DR and Ryan SJ: Effect of
tecogalan sodium on angiogenesis in vitro by choroidal endothelial
cells. Invest Ophthalmol Vis Sci. 36:1076–1083. 1995.PubMed/NCBI
|
6
|
Ohno-Matsui K, Morita I, Tombran-Tink J,
Mrazek D, Onodera M, Uetama T, Hayano M, Murota SI and Mochizuki M:
Novel mechanism for age-related macular degeneration: An
equilibrium shift between the angiogenesis factors VEGF and PEDF. J
Cell Physiol. 189:323–333. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Klagsbrun M and D'Amore PA: Regulators of
angiogenesis. Annu Rev Physiol. 53:217–239. 1991. View Article : Google Scholar : PubMed/NCBI
|
8
|
Frank RN: Growth factors in age-related
macular degeneration: Pathogenic and therapeutic implications.
Ophthalmic Res. 29:341–353. 1997. View Article : Google Scholar : PubMed/NCBI
|
9
|
Schwesinger C, Yee C, Rohan RM, Joussen
AM, Fernandez A, Meyer TN, Poulaki V, Ma JJ, Redmond TM, Liu S, et
al: Intrachoroidal neovascularization in transgenic mice
overexpressing vascular endothelial growth factor in the retinal
pigment epithelium. Am J Pathol. 158:1161–1172. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ferrara N: Vascular endothelial growth
factor and age-related macular degeneration: From basic science to
therapy. Nat Med. 16:1107–1111. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yan Z, Shi H, Zhu R, Li L, Qin B, Kang L,
Chen H and Guan H: Inhibition of YAP ameliorates choroidal
neovascularization via inhibiting endothelial cell proliferation.
Mol Vis. 24:83–93. 2018.PubMed/NCBI
|
12
|
Gunda V, Verma RK and Sudhakar YA:
Inhibition of elastin peptide-mediated angiogenic signaling
mechanism(s) in choroidal endothelial cells by the α6(IV)NC1
collagen fragment. Invest Ophthalmol Vis Sci. 54:7828–35. 2013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Stone EM: A very effective treatment for
neovascular macular degeneration. N Engl J Med. 355:1493–1495.
2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
van Wijngaarden P, Coster DJ and Williams
KA: Inhibitors of ocular neovascularization: Promises and potential
problems. JAMA. 293:1509–1513. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Howitt JA, Clout NJ and Hohenester E:
Binding site for Robo receptors revealed by dissection of the
leucine-rich repeat region of Slit. EMBO J. 23:4406–4412. 2004.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Morlot C, Thielens NM, Ravelli RB, Hemrika
W, Romijn RA, Gros P, Cusack S and McCarthy AA: Structural insights
into the Slit-Robo complex. Proc Natl Acad Sci USA.
104:14923–14928. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fujiwara M, Ghazizadeh M and Kawanami O:
Potential role of the Slit/Robo signal pathway in angiogenesis.
Vasc Med. 11:115–121. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li HS, Chen JH, Wu W, Fagaly T, Zhou L,
Yuan W, Dupuis S, Jiang ZH, Nash W, Gick C, et al: Vertebrate slit,
a secreted ligand for the transmembrane protein roundabout, is a
repellent for olfactory bulb axons. Cell. 96:807–818. 1999.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Patel K, Nash JA, Itoh A, Liu Z,
Sundaresan V and Pini A: Slit proteins are not dominant
chemorepellents for olfactory tract and spinal motor axons.
Development. 128:5031–5037. 2001.PubMed/NCBI
|
20
|
Hohenester E: Structural insight into
Slit-Robo signalling. Biochem Soc Trans. 36:251–256. 2008.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang B, Xiao Y, Ding BB, Zhang N, Yuan X,
Gui L, Qian KX, Duan S, Chen Z, Rao Y and Geng JG: Induction of
tumor angiogenesis by Slit-Robo signaling and inhibition of cancer
growth by blocking Robo activity. Cancer Cell. 4:19–29. 2003.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang LJ, Zhao Y, Han B, Ma YG, Zhang J,
Yang DM, Mao JW, Tang FT, Li WD, Yang Y, et al: Targeting
Slit-Roundabout signaling inhibits tumor angiogenesis in
chemical-induced squamous cell carcinogenesis. Cancer Sci.
99:510–517. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang XM, Han HX, Sui F, Dai YM, Chen M and
Geng JG: Slit-Robo signaling mediates lymphangiogenesis and
promotes tumor lymphatic metastasis. Biochem Biophys Res Commun.
396:571–577. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jones CA, London NR, Chen H, Park KW,
Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F,
Mukouyama YS, et al: Robo4 stabilizes the vascular network by
inhibiting pathologic angiogenesis and endothelial
hyperpermeability. Nat Med. 14:448–453. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jones CA, Nishiya N, London NR, Zhu W,
Sorensen LK, Chan AC, Lim CJ, Chen H, Zhang Q, Schultz PG, et al:
Slit2-Robo4 signalling promotes vascular stability by blocking Arf6
activity. Nat Cell Biol. 11:1325–1331. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Acevedo LM, Weis SM and Cheresh DA: Robo4
counteracts VEGF signaling. Nat Med. 14:372–373. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Koch AW, Mathivet T, Larrivée B, Tong RK,
Kowalski J, Pibouin-Fragner L, Bouvrée K, Stawicki S, Nicholes K,
Rathore N, et al: Robo4 maintains vessel integrity and inhibits
angiogenesis by interacting with UNC5B. Dev Cell. 20:33–46. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Dickinson RE and Duncan WC: The SLIT-ROBO
pathway: A regulator of cell function with implications for the
reproductive system. Reproduction. 139:697–704. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sheldon H, Andre M, Legg JA, Heal P,
Herbert JM, Sainson R, Sharma AS, Kitajewski JK, Heath VL and
Bicknell R: Active involvement of Robo1 and Robo4 in filopodia
formation and endothelial cell motility mediated via WASP and other
actin nucleation-promoting factors. FASEB J. 23:513–522. 2009.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Gorbunova EE, Gavrilovskaya IN and Mackow
ER: Slit2-Robo4 receptor responses inhibit ANDV directed
permeability of human lung microvascular endothelial cells.
Antiviral Res. 99:108–112. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cai H, Xue Y, Li Z, Hu Y, Wang Z, Liu W,
Li Z and Liu Y: Roundabout4 suppresses glioma-induced endothelial
cell proliferation, migration and tube formation in vitro by
inhibiting VEGR2-mediated PI3K/AKT and FAK signaling pathways. Cell
Physiol Biochem. 35:1689–1705. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Seth P, Lin Y, Hanai J, Shivalingappa V,
Duyao MP and Sukhatme VP: Magic roundabout, a tumor endothelial
marker: Expression and signaling. Biochem Biophys Res Commun.
332:533–541. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Suchting S, Heal P, Tahtis K, Stewart LM
and Bicknell R: Soluble Robo4 receptor inhibits in vivo
angiogenesis and endothelial cell migration. FASEB J. 19:121–123.
2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu D, Hou J, Hu X, Wang X, Xiao Y, Mou Y
and De Leon H: Neuronal chemorepellent Slit2 inhibits vascular
smooth muscle cell migration by suppressing small GTPase Rac1
activation. Circ Res. 98:480–489. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang YS, Eichler W, Friedrichs U, Yafai Y,
Hoffmann S, Yasukawa T, Hui YN and Wiedemann P: Impact of
endostatin on bFGF-induced proliferation, migration, and matrix
metalloproteinase-2 expression/secretion of bovine choroidal
endothelial cells. Curr Eye Res. 30:479–489. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Schneeweis C, Gräfe M, Bungenstock A,
Spencer-Hänsch C, Fleck E and Goetze S: Chronic CRP-exposure
inhibits VEGF-induced endothelial cell migration. J Atheroscler
Thromb. 17:203–212. 2010. View
Article : Google Scholar : PubMed/NCBI
|
37
|
Huang L, Xu Y, Yu W, Li Y, Chu L, Dong J
and Li X: Effect of Robo1 on retinal pigment epithelial cells and
experimental proliferative vitreoretinopathy. Invest Ophthalmol Vis
Sci. 51:3193–3204. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Park KW, Morrison CM, Sorensen LK, Jones
CA, Rao Y, Chien CB, Wu JY, Urness LD and Li DY: Robo4 is a
vascular-specific receptor that inhibits endothelial migration. Dev
Biol. 261:251–267. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Huminiecki L, Gorn M, Suchting S, Poulsom
R and Bicknell R: Magic roundabout is a new member of the
roundabout receptor family that is endothelial specific and
expressed at sites of active angiogenesis. Genomics. 79:547–552.
2002. View Article : Google Scholar : PubMed/NCBI
|
40
|
Li S, Huang L, Sun Y, Bai Y, Yang F, Yu W,
Li F, Zhang Q, Wang B, Geng JG and Li X: Slit2 promotes angiogenic
activity via the Robo1-VEGFR2-ERK1/2 pathway in both in vivo and in
vitro studies. Invest Ophthalmol Vis Sci. 56:5210–5217. 2015.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Han S, Kong YC, Sun B, Han QH, Chen Y and
Wang YC: microRNA-218 inhibits oxygen-induced retinal
neovascularization via reducing the expression of roundabout 1.
Chin Med J (Engl). 129:709–715. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Chen GX, Wang HY, Liu T, Yang MT, Zhou ZY
and Feng G: Myocardial Slit2/Robo4 expression and impact of
exogenous Slit2 on proliferation and migration of cardiac
microvascular endothelial cells. Zhonghua Xin Xue Guan Bing Za Zhi.
41:1034–1039. 2013.(In Chinese). PubMed/NCBI
|
43
|
Yu J, Zhang X, Kuzontkoski PM, Jiang S,
Zhu W, Li DY and Groopman JE: Slit2N and Robo4 regulate
lymphangiogenesis through the VEGF-C/VEGFR-3 pathway. Cell Commun
Signal. 12:252014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Han X and Zhang MC: Potential
anti-angiogenic role of Slit2 in corneal neovascularization. Exp
Eye Res. 90:742–749. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Enomoto S, Mitsui K, Kawamura T, Iwanari
H, Daigo K, Horiuchi K, Minami T, Kodama T and Hamakubo T:
Suppression of Slit2/Robo1 mediated HUVEC migration by Robo4.
Biochem Biophys Res Commun. 469:797–802. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Rama N, Dubrac A, Mathivet T, Ní
Chárthaigh RA, Genet G, Cristofaro B, Pibouin-Fragner L, Ma L,
Eichmann A and Chédotal A: Slit2 signaling through Robo1 and Robo2
is required for retinal neovascularization. Nat Med. 21:483–491.
2015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Gavard J and Gutkind JS: VEGF controls
endothelial-cell permeability by promoting the
beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol.
8:1223–1234. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Garrett TA, Van Buul JD and Burridge K:
VEGF-induced Rac1 activation in endothelial cells is regulated by
the guanine nucleotide exchange factor Vav2. Exp Cell Res.
313:3285–3297. 2007. View Article : Google Scholar : PubMed/NCBI
|