1
|
Falls DL: Neuregulins: Functions, forms,
and signaling strategies. Exp Cell Res. 284:14–30. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Marchionni MA, Goodearl AD, Chen MS,
Bermingham- McDonogh O, Kirk C, Hendricks M, Danehy F, Misumi D,
Sudhalter J and Kobayashi K: Glial growth factors are alternatively
spliced erbB2 ligands expressed in the nervous system. Nature.
362:312–318. 1993. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Yarden Y and Sliwkowski MX: Untangling the
ErbB signalling network. Nat Rev Mol Cell Biol. 2:127–137. 2001.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Brinkmann BG, Agarwal A, Sereda MW,
Garratt AN, Müller T, Wende H, Stassart RM, Nawaz S, Humml C,
Velanac V, et al: Neuregulin-1/ErbB signaling serves distinct
functions in myelination of the peripheral and central nervous
system. Neuron. 59:581–595. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Matsukawa R, Hirooka Y, Ito K, Honda N and
Sunagawa K: Central neuregulin-1/ErbB signaling modulates cardiac
function via sympathetic activity in pressure overload-induced
heart failure. J Hypertens. 32:817–825. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Matsukawa R, Hirooka Y, Nishihara M, Ito K
and Sunagawa K: Neuregulin-1/ErbB signaling in rostral
ventrolateral medulla is involved in blood pressure regulation as
an antihypertensive system. J Hypertens. 29:1735–1742. 2011.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Montaigne D, Hurt C and Neviere R:
Mitochondria death/survival signaling pathways in cardiotoxicity
induced by anthracyclines and anticancer-targeted therapies.
Biochem Res Int. 2012:9515392012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rupert CE and Coulombe KL: The roles of
neuregulin-1 in cardiac development, homeostasis, and disease.
Biomark Insights. 10 (Suppl 1):S1–S9. 2015.
|
9
|
Hill MF, Patel AV, Murphy A, Smith HM,
Galindo GL, Pentassuglia L, Peng X, Lenneman CG, Odiete O, Friedman
DB, et al: Intravenous glial growth factor 2 (GGF2) isoform of
neuregulin-1β improves left ventricular function, gene and protein
expression in rats after myocardial infarction. PLoS One.
8:e557412013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bersell K, Arab S, Haring B and Kühn B:
Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and
repair of heart injury. Cell. 138:257–270. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gao R, Zhang J, Cheng L, Wu X, Dong W,
Yang X, Li T, Liu X, Xu Y, Li X and Zhou M: A Phase II, randomized,
double-blind, multicenter, based on standard therapy,
placebo-controlled study of the efficacy and safety of recombinant
human neuregulin-1 in patients with chronic heart failure. J Am
Coll Cardiol. 55:1907–1914. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jabbour A, Hayward CS, Keogh AM, Kotlyar
E, McCrohon JA, England JF, Amor R, Liu X, Li XY, Zhou MD, et al:
Parenteral administration of recombinant human neuregulin-1 to
patients with stable chronic heart failure produces favourable
acute and chronic haemodynamic responses. Eur J Heart Fail.
13:83–92. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xiao J, Li B, Zheng Z, Wang M, Peng J, Li
Y and Li Z: Therapeutic effects of neuregulin-1 gene transduction
in rats with myocardial infarction. Coron Artery Dis. 23:460–468.
2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Formiga FR, Pelacho B, Garbayo E,
Imbuluzqueta I, Díaz-Herráez P, Abizanda G, Gavira JJ, Simón-Yarza
T, Albiasu E, Tamayo E, et al: Controlled delivery of fibroblast
growth factor-1 and neuregulin-1 from biodegradable microparticles
promotes cardiac repair in a rat myocardial infarction model
through activation of endogenous regeneration. J Control Release.
173:132–139. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gu X, Liu X, Xu D, Li X, Yan M, Qi Y, Yan
W, Wang W, Pan J, Xu Y, et al: Cardiac functional improvement in
rats with myocardial infarction by up-regulating cardiac myosin
light chain kinase with neuregulin. Cardiovasc Res. 88:334–343.
2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Galindo CL, Kasasbeh E, Murphy A, Ryzhov
S, Lenihan S, Ahmad FA, Williams P, Nunnally A, Adcock J, Song Y,
et al: Anti-remodeling and anti-fibrotic effects of the
neuregulin-1β glial growth factor 2 in a large animal model of
heart failure. J Am Heart Assoc. 3:e0007732014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mendes-Ferreira P, De Keulenaer GW,
Leite-Moreira AF and Brás-Silva C: Therapeutic potential of
neuregulin-1 in cardiovascular disease. Drug Discov Today.
18:836–842. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Parodi EM and Kuhn B: Signalling between
microvascular endothelium and cardiomyocytes through neuregulin.
Cardiovasc Res. 102:194–204. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Huertas-Vazquez A, Teodorescu C, Reinier
K, Uy-Evanado A, Chugh H, Jerger K, Ayala J, Gunson K, Jui J,
Newton-Cheh C, et al: A common missense variant in the neuregulin 1
gene is associated with both schizophrenia and sudden cardiac
death. Heart Rhythm. 10:994–998. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Napolitano C: Heart, brain, and the risk
of sudden death. Heart Rhythm. 10:999–1000. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang X, Liu Z, Duan HN and Wang L:
Therapeutic potential of neuregulin in cardiovascular system: Can
we ignore the effects of neuregulin on electrophysiology? Mini Rev
Med Chem. 16:867–871. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hedhli N, Huang Q, Kalinowski A, Palmeri
M, Hu X, Russell RR and Russell KS: Endothelial-derived neuregulin
protects the heart against ischemic injury. Circulation.
123:2254–2262. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liang X, Ding Y, Zhang Y, Chai YH, He J,
Chiu SM, Gao F, Tse HF and Lian Q: Activation of NRG1-ERBB4
signaling potentiates mesenchymal stem cell-mediated myocardial
repairs following myocardial infarction. Cell Death Dis.
6:e17652015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Morano M, Angotti C, Tullio F, Gambarotta
G, Penna C, Pagliaro P and Geuna S: Myocardial ischemia/reperfusion
upregulates the transcription of the Neuregulin1 receptor ErbB3,
but only postconditioning preserves protein translation: Role in
oxidative stress. Int J Cardiol. 233:73–79. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wen HZ, Xie P, Zhang F, Ma Y, Li YL and Xu
SK: Neuropilin 1 ameliorates electrical remodeling at infarct
border zones in rats after myocardial infarction. Auton Neurosci.
214:19–23. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Banach K, Halbach MD, Hu P, Hescheler J
and Egert U: Development of electrical activity in cardiac myocyte
aggregates derived from mouse embryonic stem cells. Am J Physiol
Heart Circ Physiol. 284:H2114–H2123. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kienast R, Stöger M, Handler M, Hanser F
and Baumgartner C: Alterations of field potentials in isotropic
cardiomyocyte cell layers induced by multiple endogenous pacemakers
under normal and hypothermal conditions. Am J Physiol Heart Circ
Physiol. 307:H1013–H1023. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Halbach M, Egert U, Hescheler J and Banach
K: Estimation of action potential changes from field potential
recordings in multicellular mouse cardiac myocyte cultures. Cell
Physiol Biochem. 13:271–284. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hescheler J, Halbach M, Egert U, Lu ZJ,
Bohlen H, Fleischmann BK and Reppel M: Determination of electrical
properties of ES cell-derived cardiomyocytes using MEAs. J
Electrocardiol. 37 (Suppl):110–116. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fukazawa R, Miller TA, Kuramochi Y, Frantz
S, Kim YD, Marchionni MA, Kelly RA and Sawyer DB: Neuregulin-1
protects ventricular myocytes from anthracycline-induced apoptosis
via erbB4-dependent activation of PI3-kinase/Akt. J Mol Cell
Cardiol. 35:1473–1479. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Fang SJ, Wu XS, Han ZH, Zhang XX, Wang CM,
Li XY, Lu LQ and Zhang JL: Neuregulin-1 preconditioning protects
the heart against ischemia/reperfusion injury through a
PI3K/Akt-dependent mechanism. Chin Med J (Engl). 123:3597–3604.
2010.PubMed/NCBI
|
32
|
Cohen JE, Purcell BP, MacArthur JW Jr, Mu
A, Shudo Y, Patel JB, Brusalis CM, Trubelja A, Fairman AS, Edwards
BB, et al: A bioengineered hydrogel system enables targeted and
sustained intramyocardial delivery of neuregulin, activating the
cardiomyocyte cell cycle and enhancing ventricular function in a
murine model of ischemic cardiomyopathy. Circ Heart Fail.
7:619–626. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ruhparwar A, Er F, Martin U, Radke K, Gruh
I, Niehaus M, Karck M, Haverich A and Hoppe UC: Enrichment of
cardiac pacemaker-like cells: Neuregulin-1 and cyclic AMP increase
I(f)-current density and connexin 40 mRNA levels in fetal
cardiomyocytes. Med Biol Eng Comput. 45:221–227. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Brero A, Ramella R, Fitou A, Dati C,
Alloatti G, Gallo MP and Levi R: Neuregulin-1beta1 rapidly
modulates nitric oxide synthesis and calcium handling in rat
cardiomyocytes. Cardiovasc Res. 88:443–452. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ford BD, Liu Y, Mann MA, Krauss R,
Phillips K, Gan L and Fischbach GD: Neuregulin-1 suppresses
muscarinic receptor expression and acetylcholine-activated
muscarinic K+ channels in cardiac myocytes. Biochem
Biophys Res Commun. 308:23–28. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bussek A, Wettwer E, Christ T, Lohmann H,
Camelliti P and Ravens U: Tissue slices from adult mammalian hearts
as a model for pharmacological drug testing. Cell Physiol Biochem.
24:527–536. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sun J, Yan H, Wugeti N, Guo Y, Zhang L, Ma
M, Guo X, Jiao C, Xu W and Li T: Microelectrode array measurement
of potassium ion channel remodeling on the field action potential
duration in rapid atrial pacing rabbits model. Int J Clin Exp Med.
8:249–256. 2015.PubMed/NCBI
|
38
|
Zhang Y, Guzadhur L, Jeevaratnam K,
Salvage SC, Matthews GD, Lammers WJ, Lei M, Huang CL and Fraser JA:
Arrhythmic substrate, slowed propagation and increased dispersion
in conduction direction in the right ventricular outflow tract of
murine Scn5a+/− hearts. Acta Physiol (Oxf). 211:559–573. 2014.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Brito Díaz B, Alemán Sánchez JJ and
Cabrera de León A: Resting heart rate and cardiovascular disease.
Med Clin (Barc). 143:34–38. 2014.(In Spanish). View Article : Google Scholar : PubMed/NCBI
|
40
|
Li Y, Li B, Zhang C, Zhang J, Zeng M and
Zheng Z: Effect of NRG-1/ErbB signaling intervention on the
differentiation of bone marrow stromal cells into sinus node-like
cells. J Cardiovasc Pharmacol. 63:434–440. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rentschler S, Zander J, Meyers K, France
D, Levine R, Porter G, Rivkees SA, Morley GE and Fishman GI:
Neuregulin-1 promotes formation of the murine cardiac conduction
system. Proc Natl Acad Sci USA. 99:10464–10469. 2002. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kim HG, Cho SM, Lee CK and Jeong SW:
Neuregulin 1 as an endogenous regulator of nicotinic acetylcholine
receptors in adult major pelvic ganglion neurons. Biochem Biophys
Res Commun. 463:632–637. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Di Diego JM and Antzelevitch C: Acute
myocardial ischemia: Cellular mechanisms underlying ST segment
elevation. J Electrocardiol. 47:486–490. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lazzara R and Scherlag BJ:
Electrophysiologic basis for arrhythmias in ischemic heart disease.
Am J Cardiol. 53:1B–7B. 1984. View Article : Google Scholar : PubMed/NCBI
|
45
|
Jeevaratnam K, Guzadhur L, Goh YM, Grace
AA and Huang CL: Sodium channel haploinsufficiency and structural
change in ventricular arrhythmogenesis. Acta Physiol (Oxf).
216:186–202. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Veerman CC, Wilde AA and Lodder EM: The
cardiac sodium channel gene SCN5A and its gene product NaV1.5: Role
in physiology and pathophysiology. Gene. 573:177–187. 2015.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Martínez-Mármol R, David M, Sanches R,
Roura-Ferrer M, Villalonga N, Sorianello E, Webb SM, Zorzano A,
Gumà A, Valenzuela C and Felipe A: Voltage-dependent Na+
channel phenotype changes in myoblasts. Consequences for cardiac
repair. Cardiovasc Res. 76:430–441. 2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Corfas G and Fischbach GD: The number of
Na+ channels in cultured chick muscle is increased by
ARIA, an acetylcholine receptor-inducing activity. J Neurosci.
13:2118–2125. 1993. View Article : Google Scholar : PubMed/NCBI
|
49
|
Chae KS, Martin-Caraballo M, Anderson M
and Dryer SE: Akt activation is necessary for growth factor-induced
trafficking of functional K (Ca) channels in developing
parasympathetic neurons. J Neurophysiol. 93:1174–1182. 2005.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Castillo C, Malavé C, Martínez JC, Núñez
J, Hernández D, Pasquali F, Villegas GM and Villegas R:
Neuregulin-1 isoform induces mitogenesis, KCa and Ca2+
currents in PC12 cells. A comparison with sciatic nerve conditioned
medium. Brain Res. 1110:64–75. 2006. View Article : Google Scholar : PubMed/NCBI
|
51
|
Janse MJ, Kleber AG, Capucci A, Coronel R
and Wilms-Schopman F: Electrophysiological basis for arrhythmias
caused by acute ischemia. Role of the subendocardium. J Mol Cell
Cardiol. 18:339–355. 1986. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kléber AG, Janse MJ, Wilms-Schopmann FJ,
Wilde AA and Coronel R: Changes in conduction velocity during acute
ischemia in ventricular myocardium of the isolated porcine heart.
Circulation. 73:189–198. 1986. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wang XH, Zhuo XZ, Ni YJ, Gong M, Wang TZ,
Lu Q and Ma AQ: Improvement of cardiac function and reversal of gap
junction remodeling by Neuregulin-1β in volume-overloaded rats with
heart failure. J Geriatr Cardiol. 9:172–179. 2012. View Article : Google Scholar : PubMed/NCBI
|