1
|
Liu M, Ning X, Li R, Yang Z, Yang X, Sun S
and Qian Q: Signalling pathways involved in hypoxia-induced renal
fibrosis. J Cell Mol Med. 21:1248–1259. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Vega G, Alarcon S and San Martin R: The
cellular and signalling alterations conducted by TGF-nalling
competino renal fibrosis. Cytokine. 12:115–125. 2016. View Article : Google Scholar
|
3
|
Meng XM and Lan HY: Transforming growth
factor-β and renal fibrosis. Sheng Li Xue Bao. 70:612–622. 2018.(In
Chinese). PubMed/NCBI
|
4
|
Xu J, Yu TT, Zhang K, Li M, Shi HJ, Meng
XJ, Zhu LS and Zhu LK: HGF alleviates renal interstitial fibrosis
via inhibiting the TGF-β1/SMAD pathway. Eur Rev Med Pharmacol Sci.
22:7621–7627. 2018.PubMed/NCBI
|
5
|
Soleimani A, Pashirzad M, Avan A, Ferns
GA, Khazaei M and Hassanian SM: Role of the transforming growth
factor-β signaling pathway in the pathogenesis of colorectal
cancer. J Cell Biochem. 16:2018.
|
6
|
Liu P, Zhu L, Zou G and Ke H: Matrine
suppresses pancreatic fibrosis by regulating TGF-β/Smad signaling
in rats. Yonsei Med J. 60:79–87. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen W, Zhou ZQ, Ren YQ, Zhang L, Sun LN,
Man YL and Wang ZK: Effects of long non-coding RNA LINC00667 on
renal tubular epithelial cell proliferation, apoptosis and renal
fibrosis via the miR-19b-3p/LINC00667/CTGF signaling pathway in
chronic renal failure. Cell Signal. 54:102–114. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shieh JM, Tsai YJ, Chi JC and Wu WB: TGFβ
mediates collagen production in human CRSsNP nasal mucosa-derived
fibroblasts through Smad2/3-dependent pathway and CTGF induction
and secretion. J Cell Physiol. 13:2018.
|
9
|
Balah A, Ezzat O and Akool ES: Vitamin E
inhibits cyclosporin A-induced CTGF and TIMP-1 expression by
repressing ROS-mediated activation of TGF-β/Smad signaling pathway
in rat liver. Int Immunopharmacol. 65:493–502. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen L, Ji Q, Zhu H, Ren Y, Fan Z and Tian
N: MiR-30a attenuates cardiac fibrosis in rats with myocardial
infarction by inhibiting CTGF. Exp Ther Med. 15:4318–4324.
2018.PubMed/NCBI
|
11
|
Chen M, Yan T, Ma K, Lai L, Liu C, Liang L
and Fu X: Botulinum toxin type A inhibits α-smooth muscle actin and
myosin II expression in fibroblasts derived from scar contracture.
Ann Plast Surg. 77:46–49. 2016. View Article : Google Scholar
|
12
|
Holm Nielsen S, Willumsen N, Leeming DJ,
Daniels SJ, Brix S, Karsdal MA, Genovese F and Nielsen MJ:
Serological assessment of activated fibroblasts by alpha-smooth
muscle actin (α-SMA): A noninvasive biomarker of activated
fibroblasts in lung disorders. Transl Oncol. 12:368–374. 2018.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Masola V, Bellin G, Gambaro G and Onisto
M: Heparanase: A multitasking protein involved in extracellular
matrix (ECM) remodeling and intracellular events. Cells.
7:e2362018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Meng XM, Tang PM, Li J and Lan HY:
TGF-β/Smad signaling in renal fibrosis. Front Physiol. 6:82015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Casas-Grajales S, Alvarez-Suarez D,
Ramos-Tovar E, Dayana Buendía-Montaño L, Reyes-Gordillo K, Camacho
J, Tsutsumi V and Lakshman MR: Stevioside inhibits experimental
fibrosis by down-regulating profibrotic Smad pathways and blocking
HSC activation. Basic Clin Pharmacol Toxicol. 12:123–126. 2018.
|
16
|
Sakairi T, Hiromura K, Takahashi S,
Hamatani H, Takeuchi S, Tomioka M, Maeshima A, Kuroiwa T and Nojima
Y: Effects of proteasome inhibitors on rat renal fibrosis in vitro
and in vivo. Neprology (Carlton). 16:76–86. 2011. View Article : Google Scholar
|
17
|
Costa AR, Machado N, Rego A, Sousa MJ,
Côrte-Real M and Chaves SR: Proteasome inhibition prevents cell
death induced by the chemotherapeutic agent cisplatin downstream of
DNA damage. DNA Repair (Amst). 73:28–33. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
van de Donk NWCJ and Yong K: Oral
proteasome inhibitor maintenance for multiple myeloma. Lancet.
393:204–205. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhu B, Jin Y, Han L, Chen H, Zhong F, Wang
W and Chen N: Proteasome inhibitor inhibits proliferation and
induces apoptosis in renal interstitial fibroblasts. Phamacol Rep.
65:1357–1365. 2013.
|
20
|
Arocho A, Chen B, Ladanyi M and Pan Q:
Validation of the 2-DeltaDeltaCt calculation as an alternate method
of data analysis for quantitative PCR of BCR-ABL P210 transcripts.
Diagn Mol Pathol. 15:56–61. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Johnston EF and Gillis TE: Transforming
growth factor-β1 induces differentiation of rainbow trout
(Oncorhynchus mykiss) cardiac fibroblasts into myofibroblasts. J
Exp Biol. 17:2212018.
|
22
|
Waasdorp M, de Rooij DM, Florquin S,
Duitman J and Spek CA: Protease-activated receptor-1 contributes to
renal injury and interstitial fibrosis during chronic obstructive
nephropathy. J Cell Mol Med. 23:1268–1279. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang C, Luo H, Xu Y, Tao L, Chang C and
Shen X: Salvianolic acid B-alleviated angiotensin II induces
cardiac fibrosis by suppressing NF-κB pathway in vitro. Med Sci
Monit. 24:7654–7664. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shao S and Zhang X, Duan L, Fang H, Rao S,
Liu W, Guo B and Zhang X: Lysyl hydroxylase inhibition by minoxidil
blocks collagen deposition and prevents pulmonary fibrosis via
TGF-β1/Smad3 signaling pathway. Med Sci Monit. 24:8592–8601. 2018.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Meng XM, Nikolic-Paterson DJ and Lan HY:
TGF-β: The master regulator of fibrosis. Nat Rev Nephrol.
12:325–338. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kothapalli D and Grotendorst GR: CTGF
modulates cell cycle progression in cAMP-arrested NRK fibroblasts.
J Cell Physiol. 182:119–126. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang W, Koka V and Lan HY: Transforming
growth factor-beta and Smad signaling in kidney diseases.
Nephrology (Carlton). 10:48–56. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhu Y, Zhou J and Tao G: Molecular aspects
of chronic radiation enterits. Clin Invest Med. 34:E119–E124. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Xie Y, Ostriker AC, Jin Y, Hu H, Sizer AJ,
Peng G, Morris AH, Ryu C, Herzog EL, Kyriakides T, et al: MO7 is a
negative feedback regulator of TGF-β signaling and fibrosis.
Circulation. 10:121–125. 2018.
|
30
|
Petrosino JM, Leask A and Accornero F:
Genetic manipulation of CCN2/CTGF unveils cell-specific
ECM-remodeling effects in injured skeletal muscle. FASEB J.
14:2018.
|
31
|
Feng Jian, Zuo Yumei, Xu Liang, et al:
Study of oleanolic acid in inhibiting rat cardiac fibroblasts
proliferation induced by angiotensin II through ROS-CTGF pathway.
Zhong Yao Xin Yao Yu Lin Chuang Bing Li. 5:78–82. 2014.(In
Chinese).
|
32
|
Park J, Choi G, Yim MJ, Lee JM, Yoo JS,
Park WS, Park SK, Park S, Seo SK, Kim TG, et al: Effect of
phlorotannins on myofibroblast differentiation and ECM protein
expression in transforming growth factor β1induced nasal
polypderived fibroblasts. Int J Mol Med. 42:2213–2220.
2018.PubMed/NCBI
|
33
|
Kalekou H, Kostopoulos I, Milias S and
Papadimitriou CS: Comparative study of CD34, alpha-SMA and
h-caldesmon expression in the stroma of gynaecomastia and male
breast carcinoma. Histopathology. 47:74–81. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Huang X, Wei S, Ni S, Huang Y and Qin Q:
Ubiquitin-proteasome system is required for efficient replication
of singapore grouper iridovirus. Front Microbiol. 26:27982018.
View Article : Google Scholar
|
35
|
Delpire E and Gagnon KB: Water homeostasis
and cell volume maintenance and regulation. Curr Top Membr.
81:3–52. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Della Sala G, Agriesti F, Mazzoccoli C,
Tataranni T, Costantino V and Piccoli C: Clogging the
ubiquitin-proteasome machinery with marine natural products: Last
decade update. Mar Drugs. 16:E4672018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang W, Luo J, Sheng W, Xue J, Li M, Ji J,
Liu P, Zhang X, Cao J and Zhang S: Proteomic profiling of
radiation-induced skin fibrosis in rats: Targeting the
ubiquitin-proteasome system. Int J Radiat Oncol Biol Phys.
95:751–760. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang M, Cai X, Yang J, Wang C, Tong L,
Xiao J and Li L: A targeted and pH-responsive bortezomib
nanomedicine in the treatment of metastatic bone tumors. ACS Appl
Mater Interfaces. 19:2018.
|
39
|
Coppo R: Proteasome inhibitors in
progressive renal diseases. Nephrol Dial Transplant. 29 (Suppl
1):i25–i30. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Oliva L, Orfanelli U, Resnati M, Raimondi
A, Orsi A, Milan E, Palladini G, Milani P, Cerruti F, Cascio P, et
al: The amyloidogenic light chain is a stressor that sensitizes
plasma cells to proteasome inhibitor toxicity. Blood.
129:2132–2142. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Luo D, Dong XW, Yan B, Liu M, Xue TH, Liu
H, You JH, Li F, Wang ZL and Chen ZN: MG132 selectively upregulates
MICB through the DNA damage response pathway in A549 cells. Mol Med
Rep. 20:2018.
|
42
|
Luo DW, Zheng Z, Wang H, Fan Y, Chen F,
Sun Y, Wang WJ, Sun T and Xu X: UPP mediated diabetic retinopathy
via ROS/PARP and NF-κB inflammatory factor pathways. Curr Mol Med.
15:790–799. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Cogo F, Poreba M, Rut W, Groborz K, Smyth
P, Johnston MC, Williams R, Longley DB, Burden RE, Salvesen GS, et
al: Development of an advanced nanoformulation for the
intracellular delivery of a caspase-3 selective activity-based
probe. Nanoscale. 11:742–751. 2019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhao C, Qiu L, Lv P Han A, Fang G, Liu J
and Wang S: AuNP-peptide probe for caspase-3 detection in living
cells by SERS. Analyst. 14:2018.
|
45
|
Ortiz-Lazareno PC, Bravo-Cuellar A,
Lerma-Díaz JM, Jave-Suárez LF, Aguilar-Lemarroy A,
Domínguez-Rodríguez JR, González-Ramella O, De Célis R,
Gómez-Lomelí P and Hernández-Flores G: Sensitization of U937
leukemia cells to doxorubicin by the MG132 proteasome inhibitor
induces an increase in apoptosis by suppressing NF-kappa B and
mitochondrial membrane potential loss. Cancer Cell Int.
14:14752014. View Article : Google Scholar
|
46
|
Ding WX, Ni HM, Chen X, Yu J, Zhang L and
Yin XM: A coordinated action of Bax, PUMA, and p53 promotes
MG132-induced mitochondria activation and apoptosis in colon cancer
cells. Mol Cancer Ther. 6:1062–1069. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ustundag Y, Bronk SF and Gores GJ:
Proteasome inhibition-induces endoplasmic reticulum dysfunctin and
cell death of human cholangiocarcinoma cells. World J
Gastroenterol. 13:851–857. 2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wang F, Zhang ZF, He YR, Wu HY and Wei SS:
Effects of dipeptidyl peptidase-4 inhibitors on transforming growth
factor-β1 signal transduction pathways in the ovarian fibrosis of
polycystic ovary syndrome rats. J Obstet Gynaecol Res. 4:2018.
|
49
|
Sun Q, Wang Y, Zhang J and Lu J: ENMD-1068
inhibits liver fibrosis through attenuation of TGF-β1/Smad2/3
signaling in mice. Sci Rep. 7:54982017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Hu ZC, Shi F, Liu P, Zhang J, Guo D, Cao
XL, Chen CF, Qu SQ, Zhu JY and Tang B: TIEG1 represses
smad7-mediated activation of TGF-β1/Smad signaling in keloid
pathogenesis. J Invest Dermatol. 137:1051–1059. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zulato E, Favaretto F, Veronese C,
Campanaro S, Marshall JD, Romano S, Cabrelle A, Collin GB, Zavan B,
Belloni AS, et al: ALMS1-deficient fibroblasts over-express
extra-cellular matrix components, display cell cycle delay and are
resistant to apoptosis. PLoS One. 6:e190812011. View Article : Google Scholar : PubMed/NCBI
|