1
|
Bergmann KC: Bronchial asthma-many types,
different therapies. Dtsch Med Wochenschr. 141:687–692. 2016.(In
German). PubMed/NCBI
|
2
|
Wang HY, Wong GW, Chen YZ, Ferguson AC,
Greene JM, Ma Y, Zhong NS, Lai CK and Sears MR: Prevalence of
asthma among Chinese adolescents living in Canada and in China.
CMAJ. 179:1133–1142. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Miller M, Rosenthal P, Beppu A, Mueller
JL, Hoffman HM, Tam AB, Doherty TA, McGeough MD, Pena CA, Suzukawa
M, et al: ORMDL3 transgenic mice have increased airway remodeling
and airway responsiveness characteristic of asthma. J Immunol.
192:3475–3487. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Perry MM, Durham AL, Austin PJ, Adcock IM
and Chung KF: BET bromodomains regulate transforming growth
factor-β-induced proliferation and cytokine release in asthmatic
airway smooth muscle. J Biol Chem. 290:9111–9121. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bergeron C, Tulic MK and Hamid Q: Airway
remodelling in asthma: From benchside to clinical practice. Can
Respir J. 17:e85–93. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Balmasova IP, Sepiashvili RI, Sepiashvili
IaR and Malova ES: Bronchial asthma pathogenesis and genetic
prognosis development. Zh Mikrobiol Epidemiol Immunobiol. 3:60–67.
2014.(In Russian).
|
7
|
Hizawa N: Bronchial asthma: Progress in
diagnosis and treatments. Topics: II. Pathogenesis and
pathophysiology; 2. Genes associated with asthma and asthma-related
phenotypes. Nihon Naika Gakkai Zasshi. 102:1365–1369. 2013.(In
Japanese). View Article : Google Scholar : PubMed/NCBI
|
8
|
Filipowicz W, Bhattacharyya SN and
Sonenberg N: Mechanisms of post-transcriptional regulation by
microRNAs: Are the answers in sight? Nat Rev Genet. 9:102–114.
2008. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Perry MM, Adcock IM and Chung KF: Role of
microRNAs in allergic asthma: Present and future. Curr Opin Allergy
Clin Immunol. 15:156–162. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kai W, Qian XU and Qun WU: MicroRNAs and
Asthma Regulation. Iran J Allergy Asthma Immunol. 14:120–125.
2015.PubMed/NCBI
|
13
|
Chen M, Shi J, Zhang W, Huang L, Lin X, Lv
Z, Zhang W, Liang R and Jiang S: MiR-23b controls TGF-β1 induced
airway smooth muscle cell proliferation via direct targeting of
Smad3. Pulm Pharmacol Ther. 42:33–42. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu Y, Yang K, Shi H, Xu J, Zhang D, Wu Y,
Zhou S and Sun X: MiR-21 modulates human airway smooth muscle cell
proliferation and migration in asthma through regulation of PTEN
expression. Exp Lung Res. 41:535–545. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang H, Sun Z, Yu L and Sun J: MiR-139-5p
inhibits proliferation and promoted apoptosis of human airway
smooth muscle cells by downregulating the Brg1 gene. Respir Physiol
Neurobiol. 246:9–16. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Takamizawa J, Konishi H, Yanagisawa K,
Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y,
et al: Reduced expression of the let-7 microRNAs in human lung
cancers in association with shortened postoperative survival.
Cancer Res. 64:3753–3756. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang FQ, Han XP, Zhang F, Ma X, Xiang D,
Yang XM, Ou-Yang HF and Li Z: Therapeutic efficacy of a co-blockade
of IL-13 and IL-25 on airway inflammation and remodeling in a mouse
model of asthma. Int Immunopharmacol. 46:133–140. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Solberg OD, Ostrin EJ, Love MI, Peng JC,
Bhakta NR, Hou L, Nguyen C, Solon M, Nguyen C, Barczak AJ, et al:
Airway epithelial miRNA expression is altered in asthma. Am J
Respir Crit Care Med. 186:965–974. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Rijavec M, Korošec P, Žavbi M, Kern I and
Malovrh MM: Let-7a is differentially expressed in bronchial
biopsies of patients with severe asthma. Sci Rep. 4:61032014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Polikepahad S, Knight JM, Naghavi AO, Oplt
T, Creighton CJ, Shaw C, Benham AL, Kim J, Soibam B, Harris RA, et
al: Proinflammatory role for let-7 microRNAS in experimental
asthma. J Biol Chem. 285:30139–30149. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kumar M, Ahmad T, Sharma A, Mabalirajan U,
Kulshreshtha A, Agrawal A and Ghosh B: Let-7 microRNA-mediated
regulation of IL-13 and allergic airway inflammation. J Allergy
Clin Immunol. 128:1077–1085.e1-10. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Asthma Workgroup; Chinese Thoracic
Society; Chinese Societ of General Practitioners, : Chinese
guideline for the prevention and management of bronchial asthma
(Primary Health Care Version). J Thorac Dis. 5:667–677.
2013.PubMed/NCBI
|
23
|
Chen M, Huang L, Zhang W, Shi J, Lin X, Lv
Z, Zhang W, Liang R and Jiang S: MiR-23b controls TGF-β1 induced
airway smooth muscle cell proliferation via TGFβR2/p-Smad3 signals.
Mol Immunol. 70:84–93. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Li LH, Lu B, Wu HK, Zhang H and Yao FF:
Apigenin inhibits TGF-β1-induced proliferation and migration of
airway smooth muscle cells. Int J Clin Exp Pathol. 8:12557–12563.
2015.PubMed/NCBI
|
26
|
Fahy JV, Corry DB and Boushey HA: Airway
inflammation and remodeling in asthma. Curr Opin Pulm Med. 6:15–20.
2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Baroffio M, Crimi E and Brusasco V: Airway
smooth muscle as a model for new investigative drugs in asthma.
Ther Adv Respir Dis. 2:129–139. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Dowell ML, Lavoie TL, Solway J and
Krishnan R: Airway smooth muscle: A potential target for asthma
therapy. Curr Opin Pulm Med. 20:66–72. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Brase JC, Wuttig D, Kuner R and Sültmann
H: Serum microRNAs as non-invasive biomarkers for cancer. Mol
Cancer. 9:3062010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lovat F, Valeri N and Croce CM: MicroRNAs
in the pathogenesis of cancer. Semin Oncol. 38:724–733. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Tsitsiou E, Williams AE, Moschos SA, Patel
K, Rossios C, Jiang X, Adams OD, Macedo P, Booton R, Gibeon D, et
al: Transcriptome analysis shows activation of circulating CD8+ T
cells in patients with severe asthma. J Allergy Clin Immunol.
129:95–103. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hu R, Pan W, Fedulov AV, Jester W, Jones
MR, Weiss ST, Panettieri RA Jr, Tantisira K and Lu Q: MicroRNA-10a
controls airway smooth muscle cell proliferation via direct
targeting of the PI3 kinase pathway. FASEB J. 28:2347–2357. 2014.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Chiba Y, Tanabe M, Goto K, Sakai H and
Misawa M: Down-regulation of miR-133a contributes to up-regulation
of Rhoa in bronchial smooth muscle cells. Am J Respir Crit Care
Med. 180:713–719. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Russo F, Di Bella S, Nigita G, Macca V,
Laganà A, Giugno R, Pulvirenti A and Ferro A: miRandola:
Extracellular circulating microRNAs database. PLoS One.
7:e477862012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Levänen B, Bhakta NR, Torregrosa Paredes
P, Barbeau R, Hiltbrunner S, Pollack JL, Sköld CM, Svartengren M,
Grunewald J, Gabrielsson S, et al: Altered microRNA profiles in
bronchoalveolar lavage fluid exosomes in asthmatic patients. J
Allergy Clin Immunol. 131:894–903. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Johnson CD, Esquela-Kerscher A, Stefani G,
Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J,
Shingara J, et al: The let-7 microRNA represses cell proliferation
pathways in human cells. Cancer Res. 67:7713–7722. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cheng G, Wang X, Li Y and He L:
Let-7a-transfected mesenchymal stem cells ameliorate
monocrotaline-induced pulmonary hypertension by suppressing
pulmonary artery smooth muscle cell growth through STAT3-BMPR2
signaling. Stem Cell Res Ther. 8:342017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cao H, Hu X, Zhang Q, Wang J, Li J, Liu B,
Shao Y, Li X, Zhang J and Xin S: Upregulation of let-7a inhibits
vascular smooth muscle cell proliferation in vitro and in vein
graft intimal hyperplasia in rats. J Surg Res. 192:223–233. 2014.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Lee YS and Dutta A: The tumor suppressor
microRNA let-7 represses the HMGA2 oncogene. Genes Dev.
21:1025–1030. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang Y, Lu Y, Toh ST, Sung WK, Tan P, Chow
P, Chung AY, Jooi LL and Lee CG: Lethal-7 is down-regulated by the
hepatitis B virus × protein and targets signal transducer and
activator of transcription 3. J Hepatol. 53:57–66. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Xue F, Liu Y, Zhang H, Wen Y, Yan L, Tang
Q, Xiao E and Zhang D: Let-7a enhances the sensitivity of
hepatocellular carcinoma cells to cetuximab by regulating STAT3
expression. Onco Targets Ther. 9:7253–7261. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Aggarwal BB, Kunnumakkara AB, Harikumar
KB, Gupta SR, Tharakan ST, Koca C, Dey S and Sung B: Signal
transducer and activator of transcription-3, inflammation, and
cancer: How intimate is the relationship? Ann N Y Acad Sci.
1171:59–76. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Simeone-Penney MC, Severgnini M, Tu P,
Homer RJ, Mariani TJ, Cohn L and Simon AR: Airway epithelial STAT3
is required for allergic inflammation in a murine model of asthma.
J Immunol. 178:6191–6199. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Gavino AC, Nahmod K, Bharadwaj U,
Makedonas G and Tweardy DJ: STAT3 inhibition prevents lung
inflammation, remodeling, and accumulation of Th2 and Th17 cells in
a murine asthma model. Allergy. 71:1684–1692. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Simeone-Penney MC, Severgnini M, Rozo L,
Takahashi S, Cochran BH and Simon AR: PDGF-induced human airway
smooth muscle cell proliferation requires STAT3 and the small
GTPase Rac1. Am J Physiol Lung Cell Mol Physiol. 294:L698–L704.
2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Redhu NS, Shan L, Movassagh H and Gounni
AS: Thymic stromal lymphopoietin induces migration in human airway
smooth muscle cells. Sci Rep. 3:23012013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Simon AR, Takahashi S, Severgnini M,
Fanburg BL and Cochran BH: Role of the JAK-STAT pathway in
PDGF-stimulated proliferation of human airway smooth muscle cells.
Am J Physiol Lung Cell Mol Physiol. 282:L1296–L1304. 2002.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Shi S, Jin L, Zhang S, Li H, Zhang B and
Sun M: MicroRNA-590-5p represses proliferation of human fetal
airway smooth muscle cells by targeting signal transducer and
activator of transcription 3. Arch Med Sci. 14:1093–1101. 2018.
View Article : Google Scholar : PubMed/NCBI
|