1
|
Maynard SE and Karumanchi SA: Angiogenic
factors and preeclampsia. Semin Nephrol. 31:33–46. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Steegers EA, von Dadelszen P, Duvekot JJ
and Pijnenborg R: Pre-eclampsia. Lancet. 376:631–644. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Glazko GV and Emmert-Streib F: Unite and
conquer: Univariate and multivariate approaches for finding
differentially expressed gene sets. Bioinformatics. 25:2348–2354.
2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Irizarry RA, Bolstad BM, Collin F, Cope
LM, Hobbs B and Speed TP: Summaries of Affymetrix GeneChip probe
level data. Nucleic Acids Res. 31:e15. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bolstad BM, Irizarry RA, Astrand M and
Speed TP: A comparison of normalization methods for high density
oligonucleotide array data based on variance and bias.
Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Miller JA, Menon V, Goldy J, Kaykas A, Lee
CK, Smith KA, Shen EH, Phillips JW, Lein ES and Hawrylycz MJ:
Improving reliability and absolute quantification of human brain
microarray data by filtering and scaling probes using RNA-Seq. BMC
Genomics. 15:1542014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Datta S, Satten GA, Benos DJ, Xia J,
Heslin MJ and Datta S: An empirical bayes adjustment to increase
the sensitivity of detecting differentially expressed genes in
microarray experiments. Bioinformatics. 20:235–242. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Reiner A, Yekutieli D and Benjamini Y:
Identifying differentially expressed genes using false discovery
rate controlling procedures. Bioinformatics. 19:368–375. 2003.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Szmidt E and Kacprzyk J: The Spearman rank
correlation coefficient between intuitionistic fuzzy sets. IEEE
International Conference on Intelligent Systems, Is 2010, 7–9 July
2010. University of Westminster. (London, UK). 276–280. 2010.
|
11
|
Qiu Y-Q: KEGG Pathway Database.
Encyclopedia of Systems Biology. Dubitzky W, Wolkenhauer O, Cho K-H
and Yokota H: Springer New York; New York, NY: pp. 1068–1069. 2013,
View Article : Google Scholar
|
12
|
Mostafavi S and Morris Q: Fast integration
of heterogeneous data sources for predicting gene function with
limited annotation. Bioinformatics. 26:1759–1765. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gillis J and Pavlidis P: The impact of
multifunctional genes on ‘guilt by association’ analysis. PLoS One.
6:e172582011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang J and Ling CX: Using AUC and
accuracy in evaluating learning algorithms. IEEE Trans Knowl Data
Eng. 17:299–310. 2005. View Article : Google Scholar
|
15
|
Laird DW: The gap junction proteome and
its relationship to disease. Trends Cell Biol. 20:92–101. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Bird IM, Boeldt DS, Krupp J, Grummer MA,
Yi FX and Magness RR: Pregnancy, programming and preeclampsia: Gap
junctions at the nexus of pregnancy-induced adaptation of
endothelial function and endothelial adaptive failure in PE. Curr
Vasc Pharmacol. 11:712–729. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ampey BC, Morschauser TJ, Lampe PD and
Magness RR: Gap junction regulation of vascular tone: Implications
of modulatory intercellular communication during gestation. Adv Exp
Med Biol. 814:117–132. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ishibashi O, Ohkuchi A, Ali MM, Kurashina
R, Luo SS, Ishikawa T, Takizawa T, Hirashima C, Takahashi K, Migita
M, et al: Hydroxysteroid (17-β) dehydrogenase 1 is dysregulated by
miR-210 and miR-518c that are aberrantly expressed in preeclamptic
placentas: A novel marker for predicting preeclampsia.
Hypertension. 59:265–273. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ohkuchi A, Ishibashi O, Hirashima C,
Takahashi K, Matsubara S, Takizawa T and Suzuki M: Plasma level of
hydroxysteroid (17-β) dehydrogenase 1 in the second trimester is an
independent risk factor for predicting preeclampsia after adjusting
for the effects of mean blood pressure, bilateral notching and
plasma level of soluble fms-like tyrosine kinase 1/placental growth
factor ratio. Hypertens Res. 35:1152–1158. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li FH, Han N, Wang Y and Xu Q: Gadd45a
knockdown alleviates oxidative stress through suppressing the p38
MAPK signaling pathway in the pathogenesis of preeclampsia.
Placenta. 65:20–28. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Jiang J and Zhao ZM: LncRNA HOXD-AS1
promotes preeclampsia progression via MAPK pathway. Eur Rev Med
Pharmacol Sci. 22:8561–8568. 2018.PubMed/NCBI
|
22
|
D'Oria R, Laviola L, Giorgino F, Unfer V,
Bettocchi S and Scioscia M: PKB/Akt and MAPK/ERK phosphorylation is
highly induced by inositols: Novel potential insights in
endothelial dysfunction in preeclampsia. Pregnancy Hypertens.
10:107–112. 2017. View Article : Google Scholar : PubMed/NCBI
|