1
|
Certikova-Chabova V and Tesar V: Recent
insights into the pathogenesis of nephrotic syndrome. Minerva Med.
104:333–347. 2013.PubMed/NCBI
|
2
|
2. Eddy AA and Symons JM: Nephrotic
syndrome in childhood. Lancet. 362:629–639. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
McKinney PA, Feltbower RG, Brocklebank JT
and Fitzpatrick MM: Time trends and ethnic patterns of childhood
nephrotic syndrome in Yorkshire, UK. Pediatr Nephrol. 16:1040–1044.
2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Koskimies O, Vilska J, Rapola J and
Hallman N: Long-term outcome of primary nephrotic syndrome. Arch
Dis Child. 57:544–548. 1982. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lombel RM, Gipson DS and Hodson EM; Kidney
Disease, : Improving Global Outcomes: Treatment of
steroid-sensitive nephrotic syndrome: New guidelines from KDIGO.
Pediatr Nephrol. 28:415–426. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tarshish P, Tobin JN, Bernstein J and
Edelmann CM Jr: Prognostic significance of the early course of
minimal change nephrotic syndrome: Report of the International
Study of Kidney Disease in Children. J Am Soc Nephrol. 8:769–776.
1997.PubMed/NCBI
|
7
|
Hodson EM, Willis NS and Craig JC:
Corticosteroid therapy for nephrotic syndrome in children. Cochrane
Database Syst Rev (4). CD0015332007.
|
8
|
Choudhry S, Bagga A, Hari P, Sharma S,
Kalaivani M and Dinda A: Efficacy and safety of tacrolimus versus
cyclosporine in children with steroid-resistant nephrotic syndrome:
A randomized controlled trial. Am J Kidney Dis. 53:760–769. 2009.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Gulati A, Sinha A, Gupta A, Kanitkar M,
Sreenivas V, Sharma J, Mantan M, Agarwal I, Dinda AK, Hari P, et
al: Treatment with tacrolimus and prednisolone is preferable to
intravenous cyclophosphamide as the initial therapy for children
with steroid-resistant nephrotic syndrome. Kidney Int.
82:1130–1135. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gulati S, Prasad N, Sharma RK, Kumar A,
Gupta A and Baburaj VP: Tacrolimus: A new therapy for
steroid-resistant nephrotic syndrome in children. Nephrol Dial
Transplant. 23:910–913. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Loeffler K, Gowrishankar M and Yiu V:
Tacrolimus therapy in pediatric patients with treatment-resistant
nephrotic syndrome. Pediatr Nephrol. 19:281–287. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Roberti I and Vyas S: Long-term outcome of
children with steroid-resistant nephrotic syndrome treated with
tacrolimus. Pediatr Nephrol. 25:1117–1124. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sinha A, Gupta A, Kalaivani M, Hari P,
Dinda AK and Bagga A: Mycophenolate mofetil is inferior to
tacrolimus in sustaining remission in children with idiopathic
steroid-resistant nephrotic syndrome. Kidney Int. 92:248–257. 2017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang W, Xia Y, Mao J, Chen Y, Wang D, Shen
H, Fu H, Du L and Liu A: Treatment of tacrolimus or cyclosporine A
in children with idiopathic nephrotic syndrome. Pediatr Nephrol.
27:2073–2079. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang EM, Lee ST, Choi HJ, Cho HY, Lee JH,
Kang HG, Park YS, Cheong HI and Ha IS: Tacrolimus for children with
refractory nephrotic syndrome: A one-year prospective, multicenter,
and open-label study of Tacrobell®, a generic formula.
World J Pediatr. 12:60–65. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Venkataramanan R, Swaminathan A, Prasad T,
Jain A, Zuckerman S, Warty V, McMichael J, Lever J, Burckart G and
Starzl T: Clinical pharmacokinetics of tacrolimus. Clin
Pharmacokinet. 29:404–430. 1995. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jusko WJ, Thomson AW, Fung J, McMaster P,
Wong SH, Zylber-Katz E, Christians U, Winkler M, Fitzsimmons WE,
Lieberman R, et al: Consensus document: Therapeutic monitoring of
tacrolimus (FK-506). Ther Drug Monit. 17:606–614. 1995. View Article : Google Scholar : PubMed/NCBI
|
18
|
Vadcharavivad S, Praisuwan S,
Techawathanawanna N, Treyaprasert W and Avihingsanon Y: Population
pharmacokinetics of tacrolimus in Thai kidney transplant patients:
Comparison with similar data from other populations. J Clin Pharm
Ther. 41:310–328. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Andreu F, Colom H, Grinyó JM, Torras J,
Cruzado JM and Lloberas N: Development of a population PK model of
tacrolimus for adaptive dosage control in stable kidney transplant
patients. Ther Drug Monit. 37:246–255. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Benkali K, Rostaing L, Premaud A, Woillard
JB, Saint-Marcoux F, Urien S, Kamar N, Marquet P and Rousseau A:
Population pharmacokinetics and Bayesian estimation of tacrolimus
exposure in renal transplant recipients on a new once-daily
formulation. Clin Pharmacokinet. 49:683–692. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bergmann TK, Hennig S, Barraclough KA,
Isbel NM and Staatz CE: Population pharmacokinetics of tacrolimus
in adult kidney transplant patients: Impact of CYP3A5 genotype on
starting dose. Ther Drug Monit. 36:62–70. 2014.PubMed/NCBI
|
22
|
Han N, Ha S, Yun HY, Kim MG, Min SI, Ha J,
Lee JI, Oh JM and Kim IW: Population
pharmacokinetic-pharmacogenetic model of tacrolimus in the early
period after kidney transplantation. Basic Clin Pharmacol Toxicol.
114:400–406. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhao W, Elie V, Roussey G, Brochard K,
Niaudet P, Leroy V, Loirat C, Cochat P, Cloarec S, André JL, et al:
Population pharmacokinetics and pharmacogenetics of tacrolimus in
de novo pediatric kidney transplant recipients. Clin Pharmacol
Ther. 86:609–618. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zuo XC, Ng CM, Barrett JS, Luo AJ, Zhang
BK, Deng CH, Xi LY, Cheng K, Ming YZ, Yang GP, et al: Effects of
CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in
Chinese adult renal transplant recipients: A population
pharmacokinetic analysis. Pharmacogenet Genomics. 23:251–261. 2013.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Lu YX, Su QH, Wu KH, Ren YP, Li L, Zhou TY
and Lu W: A population pharmacokinetic study of tacrolimus in
healthy Chinese volunteers and liver transplant patients. Acta
Pharmacol Sin. 36:281–288. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Musuamba FT, Guy-Viterbo V, Reding R,
Verbeeck RK and Wallemacq P: Population pharmacokinetic analysis of
tacrolimus early after pediatric liver transplantation. Ther Drug
Monit. 36:54–61. 2014.PubMed/NCBI
|
27
|
Wallin JE, Bergstrand M, Wilczek HE,
Nydert PS, Karlsson MO and Staatz CE: Population pharmacokinetics
of tacrolimus in pediatric liver transplantation: Early
posttransplantation clearance. Ther Drug Monit. 33:663–672. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Yang JW, Liao SS, Zhu LQ, Zhao Y, Zhang Y,
Sun XY, Rao W, Qu W, Li WZ and Sun LY: Population pharmacokinetic
analysis of tacrolimus early after Chinese pediatric liver
transplantation. Int J Clin Pharmacol Ther. 53:75–83. 2015.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang XQ, Wang ZW, Fan JW, Li YP, Jiao Z,
Gao JW, Peng ZH and Liu GL: The impact of sulfonylureas on
tacrolimus apparent clearance revealed by a population
pharmacokinetics analysis in Chinese adult liver-transplant
patients. Ther Drug Monit. 34:126–133. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhu L, Yang J, Zhang Y, Jing Y, Zhang Y
and Li G: Effects of CYP3A5 genotypes, ABCB1 C3435T and G2677T/A
polymorphism on pharmacokinetics of Tacrolimus in Chinese adult
liver transplant patients. Xenobiotica. 45:840–846. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Wallin JE, Friberg LE, Fasth A and Staatz
CE: Population pharmacokinetics of tacrolimus in pediatric
hematopoietic stem cell transplant recipients: New initial dosage
suggestions and a model-based dosage adjustment tool. Ther Drug
Monit. 31:457–466. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Monchaud C, de Winter BC, Knoop C, Estenne
M, Reynaud-Gaubert M, Pison C, Stern M, Kessler R, Guillemain R,
Marquet P, et al: Population pharmacokinetic modelling and design
of a Bayesian estimator for therapeutic drug monitoring of
tacrolimus in lung transplantation. Clin Pharmacokinet. 51:175–186.
2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fukudo M, Yano I, Masuda S, Goto M, Uesugi
M, Katsura T, Ogura Y, Oike F, Takada Y and Egawa H: Population
pharmacokinetic and pharmacogenomic analysis of tacrolimus in
pediatric living-donor liver transplant recipients. Clin Pharmacol
Ther. 80:331–345. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
García Sánchez MJ, Manzanares C,
Santos-Buelga D, Blázquez A, Manzanares J, Urruzuno P and Medina E:
Covariate effects on the apparent clearance of tacrolimus in
paediatric liver transplant patients undergoing conversion therapy.
Clin Pharmacokinet. 40:63–71. 2001. View Article : Google Scholar
|
35
|
Guy-Viterbo V, Scohy A, Verbeeck RK,
Reding R, Wallemacq P and Musuamba FT: Population pharmacokinetic
analysis of tacrolimus in the first year after pediatric liver
transplantation. Eur J Clin Pharmacol. 69:1533–1542. 2013.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Jalil MH, Hawwa AF, McKiernan PJ, Shields
MD and McElnay JC: Population pharmacokinetic and pharmacogenetic
analysis of tacrolimus in paediatric liver transplant patients. Br
J Clin Pharmacol. 77:130–140. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kassir N, Labbé L, Delaloye JR, Mouksassi
MS, Lapeyraque AL, Alvarez F, Lallier M, Beaunoyer M, Théorêt Y and
Litalien C: Population pharmacokinetics and Bayesian estimation of
tacrolimus exposure in paediatric liver transplant recipients. Br J
Clin Pharmacol. 77:1051–1063. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sam WJ, Aw M, Quak SH, Lim SM, Charles BG,
Chan SY and Ho PC: Population pharmacokinetics of tacrolimus in
Asian paediatric liver transplant patients. Br J Clin Pharmacol.
50:531–541. 2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yasuhara M, Hashida T, Toraguchi M,
Hashimoto Y, Kimura M, Inui K, Hori R, Inomata Y, Tanaka K and
Yamaoka Y: Pharmacokinetics and pharmacodynamics of FK 506 in
pediatric patients receiving living-related donor liver
transplantations. Transplant Proc. 27:1108–1110. 1995.PubMed/NCBI
|
40
|
Jusko WJ, Piekoszewski W, Klintmalm GB,
Shaefer MS, Hebert MF, Piergies AA, Lee CC, Schechter P and Mekki
QA: Pharmacokinetics of tacrolimus in liver transplant patients.
Clin Pharmacol Ther. 57:281–290. 1995. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lindbom L, Pihlgren P and Jonsson EN:
PsN-Toolkit - a collection of computer intensive statistical
methods for non-linear mixed effect modeling using NONMEM. Comput
Methods Programs Biomed. 79:241–257. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang DD, Lu JM, Li Q and Li ZP: Population
pharmacokinetics of tacrolimus in paediatric systemic lupus
erythematosus based on real-world study. J Clin Pharm Ther.
43:476–483. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Lindbom L, Ribbing J and Jonsson EN:
Perl-speaks-NONMEM (PsN) - a Perl module for NONMEM related
programming. Comput Methods Programs Biomed. 75:85–94. 2004.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Brendel K, Dartois C, Comets E,
Lemenuel-Diot A, Laveille C, Tranchand B, Girard P, Laffont CM and
Mentré F: Are population pharmacokinetic and/or pharmacodynamic
models adequately evaluated? A survey of the literature from 2002
to 2004. Clin Pharmacokinet. 46:221–234. 2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Jolling K, Perez Ruixo JJ, Hemeryck A,
Vermeulen A and Greway T: Mixed-effects modelling of the
interspecies pharmacokinetic scaling of pegylated human
erythropoietin. Eur J Pharm Sci. 24:465–475. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kauffman RE and Kearns GL: Pharmacokinetic
studies in paediatric patients. Clinical and ethical
considerations. Clin Pharmacokinet. 23:10–29. 1992. View Article : Google Scholar : PubMed/NCBI
|
47
|
Przepiorka D, Blamble D, Hilsenbeck S,
Danielson M, Krance R and Chan KW: Tacrolimus clearance is
age-dependent within the pediatric population. Bone Marrow
Transplant. 26:601–605. 2000. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hojs R, Bevc S, Ekart R, Gorenjak M and
Puklavec L: Serum cystatin C as an endogenous marker of renal
function in patients with mild to moderate impairment of kidney
function. Nephrol Dial Transplant. 21:1855–1862. 2006. View Article : Google Scholar : PubMed/NCBI
|
49
|
Dharnidharka VR, Kwon C and Stevens G:
Serum cystatin C is superior to serum creatinine as a marker of
kidney function: A meta-analysis. Am J Kidney Dis. 40:221–226.
2002. View Article : Google Scholar : PubMed/NCBI
|
50
|
Koenig W, Twardella D, Brenner H and
Rothenbacher D: Plasma concentrations of cystatin C in patients
with coronary heart disease and risk for secondary cardiovascular
events: More than simply a marker of glomerular filtration rate.
Clin Chem. 51:321–327. 2005. View Article : Google Scholar : PubMed/NCBI
|
51
|
Villa P, Jiménez M, Soriano MC and
Manzanares JP: Serum cystatin C concentration as a marker of acute
renal dysfunction in critically ill patients. Crit Care.
9:R139–R143. 2005. View
Article : Google Scholar : PubMed/NCBI
|
52
|
Zaffanello M, Franchini M and Fanos V: Is
serum Cystatin-C a suitable marker of renal function in children?
Ann Clin Lab Sci. 37:233–240. 2007.PubMed/NCBI
|
53
|
Cordeiro VF, Pinheiro DC, Silva GB Jr,
Lima JW, Mota RM, Libório AB and Daher EF: Comparative study of
cystatin C and serum creatinine in the estimative of glomerular
filtration rate in children. Clin Chim Acta. 391:46–50. 2008.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Kurzawski M and Droździk M:
Pharmacogenetics in solid organ transplantation: Genes involved in
mechanism of action and pharmacokinetics of immunosuppressive
drugs. Pharmacogenomics. 14:1099–1118. 2013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Haufroid V, Mourad M, Van Kerckhove V,
Wawrzyniak J, De Meyer M, Eddour DC, Malaise J, Lison D, Squifflet
JP and Wallemacq P: The effect of CYP3A5 and MDR1 (ABCB1)
polymorphisms on cyclosporine and tacrolimus dose requirements and
trough blood levels in stable renal transplant patients.
Pharmacogenetics. 14:147–154. 2004. View Article : Google Scholar : PubMed/NCBI
|
56
|
Hesselink DA, van Schaik RH, van der
Heiden IP, van der Werf M, Gregoor PJ, Lindemans J, Weimar W and
van Gelder T: Genetic polymorphisms of the CYP3A4, CYP3A5, and
MDR-1 genes and pharmacokinetics of the calcineurin inhibitors
cyclosporine and tacrolimus. Clin Pharmacol Ther. 74:245–254. 2003.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Kuypers DR, de Jonge H, Naesens M and
Vanrenterghem Y: A prospective, open-label, observational clinical
cohort study of the association between delayed renal allograft
function, tacrolimus exposure, and CYP3A5 genotype in adult
recipients. Clin Ther. 32:2012–2023. 2010. View Article : Google Scholar : PubMed/NCBI
|
58
|
Quteineh L, Verstuyft C, Furlan V,
Durrbach A, Letierce A, Ferlicot S, Taburet AM, Charpentier B and
Becquemont L: Influence of CYP3A5 genetic polymorphism on
tacrolimus daily dose requirements and acute rejection in renal
graft recipients. Basic Clin Pharmacol Toxicol. 103:546–552. 2008.
View Article : Google Scholar : PubMed/NCBI
|