Role of macrophages in experimental liver injury and repair in mice (Review)
- Authors:
- Xiaotian Dong
- Jingqi Liu
- Yanping Xu
- Hongcui Cao
-
Affiliations: State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China - Published online on: March 27, 2019 https://doi.org/10.3892/etm.2019.7450
- Pages: 3835-3847
This article is mentioned in:
Abstract
Wynn TA and Vannella KM: Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 44:450–462. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vannella KM and Wynn TA: Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol. 79:593–617. 2017. View Article : Google Scholar : PubMed/NCBI | |
Epelman S, Lavine KJ and Randolph GJ: Origin and functions of tissue macrophages. Immunity. 41:21–35. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ginhoux F and Guilliams M: Tissue-resident macrophage ontogeny and homeostasis. Immunity. 44:439–449. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gregory SH and Wing EJ: Neutrophil-Kupffer cell interaction: A critical component of host defenses to systemic bacterial infections. J Leukoc Biol. 72:239–248. 2002.PubMed/NCBI | |
Ganz T: Macrophages and systemic iron homeostasis. J Innate Immun. 4:446–453. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, et al: A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 336:86–90. 2012. View Article : Google Scholar : PubMed/NCBI | |
Davies LC, Jenkins SJ, Allen JE and Taylor PR: Tissue-resident macrophages. Nat Immunol. 14:986–995. 2013. View Article : Google Scholar : PubMed/NCBI | |
Klein I, Cornejo JC, Polakos NK, John B, Wuensch SA, Topham DJ, Pierce RH and Crispe IN: Kupffer cell heterogeneity: Functional properties of bone marrow derived and sessile hepatic macrophages. Blood. 110:4077–4085. 2007. View Article : Google Scholar : PubMed/NCBI | |
Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al: Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity. 41:14–20. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stein M, Keshav S, Harris N and Gordon S: Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J Exp Med. 176:287–292. 1992. View Article : Google Scholar : PubMed/NCBI | |
Laskin DL, Sunil VR, Gardner CR and Laskin JD: Macrophages and tissue injury: Agents of defense or destruction? Annu Rev Pharmacol Toxicol. 51:267–288. 2011. View Article : Google Scholar : PubMed/NCBI | |
Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 6:132014. View Article : Google Scholar : PubMed/NCBI | |
Weber LW, Boll M and Stampfl A: Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 33:105–136. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mehendale HM: Tissue repair: An important determinant of final outcome of toxicant-induced injury. Toxicol Pathol. 33:41–51. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tacke F: Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Fibrogenesis Tissue Repair. 5 (Suppl 1):S272012. View Article : Google Scholar : PubMed/NCBI | |
Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, Merad M, Luedde T, Trautwein C and Tacke F: Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 50:261–274. 2009. View Article : Google Scholar : PubMed/NCBI | |
Heymann F, Hammerich L, Storch D, Bartneck M, Huss S, Russeler V, Gassler N, Lira SA, Luedde T, Trautwein C, et al: Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice. Hepatology. 55:898–909. 2012. View Article : Google Scholar : PubMed/NCBI | |
Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M and Ley K: Development of monocytes, macrophages, and dendritic cells. Science. 327:656–661. 2010. View Article : Google Scholar : PubMed/NCBI | |
Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizcay-Barrena G, Hedrick CC, Cook HT, Diebold S and Geissmann F: Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell. 153:362–375. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mildner A, Schonheit J, Giladi A, David E, Lara-Astiaso D, Lorenzo-Vivas E, Paul F, Chappell-Maor L, Priller J, Leutz A, et al: Genomic characterization of murine monocytes reveals C/EBPβ transcription factor dependence of Ly6C-Cells. Immunity. 46:849–862 e847. 2017. View Article : Google Scholar : PubMed/NCBI | |
Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R and Iredale JP: Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 115:56–65. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A, Hartland SN, Snowdon VK, Cappon A, Gordon-Walker TT, et al: Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci USA. 109:E3186–3195. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ma PF, Gao CC, Yi J, Zhao JL, Liang SQ, Zhao Y, Ye YC, Bai J, Zheng QJ, Dou KF, et al: Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol. 67:770–779. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ramachandran P, Iredale JP and Fallowfield JA: Resolution of liver fibrosis: Basic mechanisms and clinical relevance. Semin Liver Dis. 35:119–131. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tacke F and Zimmermann HW: Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 60:1090–1096. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wree A and Marra F: The inflammasome in liver disease. J Hepatol. 65:1055–1056. 2016. View Article : Google Scholar : PubMed/NCBI | |
Weber LWD, Boll M and Stampfl A: Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 33:105–136. 2003. View Article : Google Scholar : PubMed/NCBI | |
Marra F and Tacke F: Roles for chemokines in liver disease. Gastroenterology. 147:577–594.e571. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nakamoto N, Ebinuma H, Kanai T, Chu PS, Ono Y, Mikami Y, Ojiro K, Lipp M, Love PE, Saito H, et al: CCR9+ macrophages are required for acute liver inflammation in mouse models of hepatitis. Gastroenterology. 142:366–376. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chu PS, Nakamoto N, Ebinuma H, Usui S, Saeki K, Matsumoto A, Mikami Y, Sugiyam K, Tomita K, Kanai T, et al: C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology. 58:337–350. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hamidzadeh K, Christensen SM, Dalby E, Chandrasekaran P and Mosser DM: Macrophages and the Recovery from Acute and Chronic Inflammation. Annu Rev Physiol. 79:567–592. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zimmers TA, McKillop IH, Pierce RH, Yoo JY and Koniaris LG: Massive liver growth in mice induced by systemic interleukin 6 administration. Hepatology. 38:326–334. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-Giannone MC, Tall AR, Davis RJ, Flavell R, Brenner DA and Tabas I: Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: Model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem. 280:21763–21772. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY, Dapito DH, Jang MK, Guenther ND, Mederacke I, Friedman R, et al: Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 58:1461–1473. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lotersztajn S, Julien B, Teixeira-Clerc F, Grenard P and Mallat A: Hepatic fibrosis: Molecular mechanisms and drug targets. Annu Rev Pharmacol Toxicol. 45:605–628. 2005. View Article : Google Scholar : PubMed/NCBI | |
Borkham-Kamphorst E, Kovalenko E, van Roeyen CR, Gassler N, Bomble M, Ostendorf T, Floege J, Gressner AM and Weiskirchen R: Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury. Lab Invest. 88:1090–1100. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hao ZM, Fan XB, Li S, Lv YF, Su HQ, Jiang HP and Li HH: Vaccination with Platelet-Derived Growth Factor B Kinoids Inhibits CCl4-Induced Hepatic Fibrosis in Mice. J Pharmacol Exp Ther. 342:835–842. 2012. View Article : Google Scholar : PubMed/NCBI | |
Perugorria MJ, Murphy LB, Fullard N, Chakraborty JB, Vyrla D, Wilson CL, Oakley F, Mann J and Mann DA: Tumor progression locus 2/Cot is required for activation of extracellular regulated kinase in liver injury and toll-like receptor-induced TIMP-1 gene transcription in hepatic stellate cells in mice. Hepatology. 57:1238–1249. 2013. View Article : Google Scholar : PubMed/NCBI | |
Louis H, Van Laethem JL, Wu W, Quertinmont E, Degraef C, Van den Berg K, Demols A, Goldman M, Le Moine O, Geerts A and Devière J: Interleukin-10 controls neutrophilic infiltration, hepatocyte proliferation, and liver fibrosis induced by carbon tetrachloride in mice. Hepatology. 28:1607–1615. 1998. View Article : Google Scholar : PubMed/NCBI | |
Thompson K, Maltby J, Fallowfield J, McAulay M, Millward-Sadler H and Sheron N: Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology. 28:1597–1606. 1998. View Article : Google Scholar : PubMed/NCBI | |
Fallowfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benyon RC, Duffield JS and Iredale JP: Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 178:5288–5295. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wasmuth HE, Lammert F, Zaldivar MM, Weiskirchen R, Hellerbrand C, Scholten D, Berres ML, Zimmermann H, Streetz KL, Tacke F, et al: Antifibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans. Gastroenterology. 137:309–319, 319 e301-303. 2009. View Article : Google Scholar : PubMed/NCBI | |
Karlmark KR, Zimmermann HW, Roderburg C, Gassler N, Wasmuth HE, Luedde T, Trautwein C and Tacke F: The fractalkine receptor CX(3)CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology. 52:1769–1782. 2010. View Article : Google Scholar : PubMed/NCBI | |
Scott-Conner CE and Grogan JB: The pathophysiology of biliary obstruction and its effect on phagocytic and immune function. J Surg Res. 57:316–336. 1994. View Article : Google Scholar : PubMed/NCBI | |
Lazar G, Paszt A, Kaszaki J, Duda E, Szakacs J, Tiszlavicz L, Boros M, Balogh A and Lazar G: Kupffer cell phagocytosis blockade decreases morbidity in endotoxemic rats with obstructive jaundice. Inflamm Res. 51:511–518. 2002. View Article : Google Scholar : PubMed/NCBI | |
Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Roberts PJ, Svingen PA, Kaufmann SH and Gores GJ: Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest. 103:137–145. 1999. View Article : Google Scholar : PubMed/NCBI | |
Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ and Gores GJ: Fas enhances fibrogenesis in the bile duct ligated mouse: A link between apoptosis and fibrosis. Gastroenterology. 123:1323–1330. 2002. View Article : Google Scholar : PubMed/NCBI | |
Canbay A, Feldstein AE, Higuchi H, Werneburg N, Grambihler A, Bronk SF and Gores GJ: Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology. 38:1188–1198. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gehring S, Dickson EM, San Martin ME, van Rooijen N, Papa EF, Harty MW, Tracy TF Jr..Gregory SH: Kupffer cells abrogate cholestatic liver injury in mice. Gastroenterology. 130:810–822. 2006. View Article : Google Scholar : PubMed/NCBI | |
Osawa Y, Seki E, Adachi M, Suetsugu A, Ito H, Moriwaki H, Seishima M and Nagaki M: Role of acid sphingomyelinase of kupffer cells in cholestatic liver injury in mice. Hepatology. 51:237–245. 2010. View Article : Google Scholar : PubMed/NCBI | |
Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA and Schwabe RF: TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 13:1324–1332. 2007. View Article : Google Scholar : PubMed/NCBI | |
Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, et al: Interleukin-17 Signaling in inflammatory, kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 143:765–776.e3. 2012. View Article : Google Scholar : PubMed/NCBI | |
Steinman L: A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med. 13:139–145. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ying HZ, Chen Q, Zhang WY, Zhang HH, Ma Y, Zhang SZ, Fang J and Yu CH: PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics. Mol Med Report. 16:7879–7889. 2017. View Article : Google Scholar | |
Guillot A, Hamdaoui N, Bizy A, Zoltani K, Souktani R, Zafrani ES, Mallat A, Lotersztajn S and Lafdil F: Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver. Hepatology. 59:296–306. 2014. View Article : Google Scholar : PubMed/NCBI | |
Popov Y, Sverdlov DY, Bhaskar KR, Sharma AK, Millonig G, Patsenker E, Krahenbuhl S, Krahenbuhl L and Schuppan D: Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis. Am J Physiol Gastrointest Liver Physiol. 298:G323–G334. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chilakapati J, Shankar K, Korrapati MC, Hill RA and Mehendale HM: Saturation toxicokinetics of thioacetamide: Role in initiation of liver injury. Drug Metab Dispos. 33:1877–1885. 2005.PubMed/NCBI | |
Kuramochi M, Izawa T, Pervin M, Bondoc A, Kuwamura M and Yamate J: The kinetics of damage-associated molecular patterns (DAMPs) and toll-like receptors during thioacetamide-induced acute liver injury in rats. Exp Toxicol Pathol. 68:471–477. 2016. View Article : Google Scholar : PubMed/NCBI | |
Erridge C: Endogenous ligands of TLR2 and TLR4: Agonists or assistants? J Leukoc Biol. 87:989–999. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fujisawa K, Miyoshi T, Tonomura Y, Izawa T, Kuwamura M, Torii M and Yamate J: Relationship of heat shock protein 25 with reactive macrophages in thioacetamide-induced rat liver injury. Exp Toxicol Pathol. 63:599–605. 2011. View Article : Google Scholar : PubMed/NCBI | |
Andres D, Sanchez-Reus I, Bautista M and Cascales M: Depletion of Kupffer cell function by gadolinium chloride attenuates thioacetamide-induced hepatotoxicity-Expression of metallothionein and HSP70. Biochem Pharmacol. 66:917–926. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ide M, Kuwamura M, Kotani T, Sawamoto O and Yamate J: Effects of gadolinium chloride (GdCl3) on the appearance of macrophage populations and fibrogenesis in thioacetamide-induced rat hepatic lesions. J Comp Pathol. 133:92–102. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ide M, Yamate J, Machida Y, Nakanishi M, Kuwamura M, Kotani T and Sawamoto O: Emergence of different macrophage populations in hepatic fibrosis following thioacetamide-induced acute hepatocyte injury in rats. J Comp Pathol. 128:41–51. 2003. View Article : Google Scholar : PubMed/NCBI | |
Golbar HM, Izawa T, Wijesundera KK, Bondoc A, Tennakoon AH, Kuwamura M and Yamate J: Depletion of hepatic macrophages aggravates liver lesions induced in rats by thioacetamide (TAA). Toxicol Pathol. 44:246–258. 2016. View Article : Google Scholar : PubMed/NCBI | |
DiezFernandez C, Sanz N, Bosca L, Hortelano S and Cascales M: Involvement of nitric oxide synthesis in hepatic perturbations induced in rats by a necrogenic dose of thioacetamide. Br J Pharmacol. 121:820–826. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI, Yue ZY, Czaja MJ and Friedman SL: Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology. 142:938–946. 2012. View Article : Google Scholar : PubMed/NCBI | |
Palacios RS, Roderfeld M, Hemmann S, Rath T, Atanasova S, Tschuschner A, Gressner OA, Weiskirchen R, Graf J and Roeb E: Activation of hepatic stellate cells is associated with cytokine expression in thioacetamide-induced hepatic fibrosis in mice. Lab Invest. 88:1192–1203. 2008. View Article : Google Scholar : PubMed/NCBI | |
Traber PG, Chou H, Zomer E, Hong F, Klyosov A, Fiel MI and Friedman SL: Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One. 8:e753612013. View Article : Google Scholar : PubMed/NCBI | |
Wijesundera KK, Izawa T, Tennakoon AH, Murakami H, Golbar HM, Katou-Ichikawa C, Tanaka M, Kuwamura M and Yamate J: M1- and M2-macrophage polarization in rat liver cirrhosis induced by thioacetamide (TAA), focusing on Iba1 and galectin-3. Exp Mol Pathol. 96:382–392. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yada A, Iimuro Y, Uyama N, Uda Y, Okada T and Fujimoto J: Splenectomy attenuates murine liver fibrosis with hypersplenism stimulating hepatic accumulation of Ly-6C(lo) macrophages. J Hepatol. 63:905–916. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jaeschke H and Bajt ML: Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci. 89:31–41. 2006. View Article : Google Scholar : PubMed/NCBI | |
Krenkel O, Mossanen Jana C and Tacke F: Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surgery and Nutrition. 3:331–343. 2014.PubMed/NCBI | |
Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J, Lu B, Chavan S, Rosas-Ballina M, Al-Abed Y, et al: A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci USA. 107:11942–11947. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Sun R, Wei H and Tian Z: High-mobility group box 1 (HMGB1)-toll-like receptor (TLR)4-interleukin (IL)-23-IL-17A axis in drug-induced damage-associated lethal hepatitis: Interaction of γδ T cells with macrophages. Hepatology. 57:373–384. 2013. View Article : Google Scholar : PubMed/NCBI | |
Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Lima BH, Lopes GA, Russo RC, Avila TV, Melgaco JG, et al: Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology. 56:1971–1982. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Lima BH, Lopes GA, Russo RC, Avila TV, Melgaco JG, et al: Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology. 56:1971–1982. 2012. View Article : Google Scholar : PubMed/NCBI | |
Williams CD, Bajt ML, Sharpe MR, McGill MR, Farhood A and Jaeschke H: Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol Appl Pharmacol. 275:122–133. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jaeschke H, Williams CD, Ramachandran A and Bajt ML: Acetaminophen hepatotoxicity and repair: The role of sterile inflammation and innate immunity. Liver Int. 32:8–20. 2012. View Article : Google Scholar : PubMed/NCBI | |
Triantafyllou E, Pop OT, Possamai LA, Wilhelm A, Liaskou E, Singanayagam A, Bernsmeier C, Khamri W, Petts G, Dargue R, et al: MerTK expressing hepatic macrophages promote the resolution of inflammation in acute liver failure. Gut. 67:333–347. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zigmond E, Samia-Grinberg S, Pasmanik-Chor M, Brazowski E, Shibolet O, Halpern Z and Varol C: Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury. J Immunol. 193:344–353. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepelt A, Puengel T, Heymann F, Kalthoff S, Lefebvre E, Eulberg D, et al: Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology. 64:1667–1682. 2016. View Article : Google Scholar : PubMed/NCBI | |
Graubardt N, Vugman M, Mouhadeb O, Caliari G, Pasmanik-Chor M, Reuveni D, Zigmond E, Brazowski E, David E, Chappell-Maor L, et al: Ly6C(hi) monocytes and their macrophage descendants regulate neutrophil function and clearance in acetaminophen-induced liver injury. Front Immunol. 8:6262017. View Article : Google Scholar : PubMed/NCBI | |
Stachlewitz RF, Seabra V, Bradford B, Bradham CA, Rusyn I, Germolec D and Thurman RG: Glycine and uridine prevent D-galactosamine hepatotoxicity in the rat: Role of Kupffer cells. Hepatology. 29:737–745. 1999. View Article : Google Scholar : PubMed/NCBI | |
Xiong QB, Hase K, Tezuka Y, Namba T and Kadota S: Acteoside inhibits apoptosis in D-galactosamine and lipopolysaccharide-induced liver injury. Life Sci. 65:421–430. 1999. View Article : Google Scholar : PubMed/NCBI | |
Galanos C, Freudenberg MA and Reutter W: Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci USA. 76:5939–5943. 1979. View Article : Google Scholar : PubMed/NCBI | |
Kitazawa T, Tsujimoto T, Kawaratani H, Fujimoto M and Fukui H: Expression of Toll-like receptor 4 in various organs in rats with D-galactosamine-induced acute hepatic failure. J Gastroenterol Hepatol. 23:E494–E498. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ben Ari Z, Avlas O, Pappo O, Zilbermints V, Cheporko Y, Bachmetov L, Zemel R, Shainberg A, Sharon E, Grief F, et al: Reduced hepatic injury in toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure. Cell Physiol Biochem. 29:41–50. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ilyas G, Zhao EP, Liu K, Lin Y, Tesfa L, Tanaka KE and Czaja MJ: Macrophage autophagy limits acute toxic liver injury in mice through down regulation of interleukin-1β. J Hepatol. 64:118–127. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li L, Duan CL, Zhao Y, Zhang XF, Yin HY, Wang TX, Huang CX, Liu SH, Yang SY and Li XJ: Preventive effects of interleukin-6 in lipopolysaccharide/D-galactosamine induced acute liver injury via regulating inflammatory response in hepatic macrophages. Int Immunopharmacol. 51:99–106. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dejager L and Libert C: Tumor necrosis factor alpha mediates the lethal hepatotoxic effects of poly(I:C) in D-galactosamine-sensitized mice. Cytokine. 42:55–61. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wolf AM, Wolf D, Rumpold H, Ludwiczek S, Enrich B, Gastl G, Weiss G and Tilg H: The kinase inhibitor imatinib mesylate inhibits TNF-alpha production in vitro and prevents TNF-dependent acute hepatic inflammation. Proc Natl Acad Sci USA. 102:13622–13627. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Sun R, Wei HM and Tian ZG: Toll-like receptor 3 ligand attenuates LPS-induced liver injury by down-regulation of toll-like receptor 4 expression on macrophages. Proc Natl Acad Sci USA. 102:17077–17082. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zheng XF, Hu XY, Ma B, Fang H, Zhang F, Mao YF, Yang FY, Xiao SC and Xia ZF: Interleukin-35 attenuates D-galactosamine/lipopolysaccharide-induced liver injury via enhancing interleukin-10 production in kupffer cells. Front Pharmacol. 9:9592018. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Zhou HM, Ni M, Wang XH, Busuttil R, Kupiec-Weglinski J and Zhai Y: Innate immune regulations and liver ischemia-reperfusion injury. Transplantation. 100:2601–2610. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, Yang H, Li J, Tracey KJ, Geller DA, et al: The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med. 201:1135–1143. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mosher B, Dean R, Harkema J, Remick D, Palma J and Crockett E: Inhibition of Kupffer cells reduced CXC chemokine production and liver injury. J Surg Res. 99:201–210. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Tang W, Geng Q and Xu X: Inhibition of toll-like receptor 4 with vasoactive intestinal peptide attenuates liver ischemia-reperfusion injury. Transplant Proc. 43:1462–1467. 2011. View Article : Google Scholar : PubMed/NCBI | |
Devey L, Ferenbach D, Mohr E, Sangster K, Bellamy CO, Hughes J and Wigmore SJ: Tissue-resident macrophages protect the liver from ischemia reperfusion injury via a heme oxygenase-1-dependent mechanism. Mol Ther. 17:65–72. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ellett JD, Atkinson C, Evans ZP, Amani Z, Balish E, Schmidt MG, van Rooijen N, Schnellmann RG and Chavin KD: Murine Kupffer cells are protective in total hepatic ischemia/reperfusion injury with bowel congestion through IL-10. J Immunol. 184:5849–5858. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ke B, Shen XD, Gao F, Ji HF, Qiao B, Zhai Y, Farmer DG, Busuttil RW and Kupiec-Weglinski JW: Adoptive transfer of Ex Vivo HO-1 modified bone marrow-derived macrophages prevents liver ischemia and reperfusion injury. Mol Ther. 18:1019–1025. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ke B, Shen XD, Ji H, Kamo N, Gao F, Freitas MC, Busuttil RW and Kupiec-Weglinski JW: HO-1-STAT3 axis in mouse liver ischemia/reperfusion injury: Regulation of TLR4 innate responses through PI3K/PTEN signaling. J Hepatol. 56:359–366. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ji H, Shen X, Gao F, Ke B, Freitas MC, Uchida Y, Busuttil RW, Zhai Y and Kupiec-Weglinski JW: Programmed death-1/B7-H1 negative costimulation protects mouse liver against ischemia and reperfusion injury. Hepatology. 52:1380–1389. 2010. View Article : Google Scholar : PubMed/NCBI | |
Devisscher L, Verhelst X, Colle I, Van Vlierberghe H and Geerts A: The role of macrophages in obesity-driven chronic liver disease. J Leukoc Biol. 99:693–698. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lumeng Carey N, Bodzin Jennifer L and Saltiel Alan R: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 117:175–184. 2007. View Article : Google Scholar : PubMed/NCBI | |
Neuschwander-Tetri Brent A: Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: The central role of nontriglyceride fatty acid metabolites. Hepatology. 52:774–788. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W, et al: Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell. 171:372–384 e312. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luo W, Xu Q, Wang Q, Wu H and Hua J: Effect of modulation of PPAR-γ activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease. Sci Rep. 7:446122017. View Article : Google Scholar : PubMed/NCBI | |
Stienstra R, Saudale F, Duval C, Keshtkar S, Groener JE, van Rooijen N, Staels B, Kersten S and Mueller M: Kupffer cells promote hepatic steatosis via interleukin-1 beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology. 51:511–522. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Metlakunta A, Dedousis N, Zhang P, Sipula I, Dube John J, Scott Donald K and O'Doherty Robert M: Depletion of liver kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes. 59:347–357. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Louvet A, Lafdil F, Pecker F, Tran A, Gual P, Mallat A, et al: M2 kupffer cells promote M1 kupffer cell apoptosis: A protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology. 59:130–142. 2014. View Article : Google Scholar : PubMed/NCBI | |
Day CP and James OF: Steatohepatitis: A tale of two ‘hits’? Gastroenterology. 114:842–845. 1998. View Article : Google Scholar : PubMed/NCBI | |
Tilg H and Moschen AR: Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology. 52:1836–1846. 2010. View Article : Google Scholar : PubMed/NCBI | |
Malhi H and Gores GJ: Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis. 28:360–369. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim SH, Hirsova P, Tomita K, Bronk SF, Werneburg NW, Harrison SA, Goodfellow VS, Malhi H and Gores GJ: Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology. 63:731–744. 2016. View Article : Google Scholar : PubMed/NCBI | |
Idrissova L, Malhi H, Werneburg NW, LeBrasseur NK, Bronk SF, Fingas C, Tchkonia T, Pirtskhalava T, White TA, Stout MB, et al: TRAIL receptor deletion in mice suppresses the inflammation of nutrient excess. J Hepatol. 62:1156–1163. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li L, Chen L, Hu L, Liu Y, Sun HY, Tang J, Hou YJ, Chang YX, Tu QQ, Feng GS, et al: Nuclear factor high-mobility group box1 mediating the activation of toll-like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice. Hepatology. 54:1620–1630. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reid DT, Reyes JL, McDonald BA, Vo T, Reimer RA and Eksteen B: Kupffer cells undergo fundamental changes during the development of experimental NASH and are critical in initiating liver damage and inflammation. PLoS One. 11:e01595242016. View Article : Google Scholar : PubMed/NCBI | |
Baeck C, Wehr A, Karlmark Karlin R, Heymann F, Vucur M, Gassler N, Huss S, Klussmann S, Eulberg D, Luedde T, et al: Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 61:416–426. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miura K, Yang L, van Rooijen N, Ohnishi H and Seki E: Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol-Gastroint Liver Physiol. 302:G1310–G1321. 2012. View Article : Google Scholar | |
McMahan RH, Wang XXX, Cheng LL, Krisko T, Smith M, El Kasmi K, Pruzanski M, Adorini L, Golden-Mason L, Levi M, et al: Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem. 288:11761–11770. 2013. View Article : Google Scholar : PubMed/NCBI | |
Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, Olefsky JM, Brenner DA and Seki E: Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1 beta in mice. Gastroenterology. 139:323–334.e7. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tomita K, Tamiya G, Ando S, Ohsumi K, Chiyo T, Mizutani A, Kitamura N, Toda K, Kaneko T, Horie Y, et al: Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 55:415–424. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Leclercq I, Brymora JM, Xu N, Ramezani-Moghadam M, London RM, Brigstock D and George J: Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology. 137:713–723. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tacke F: Targeting hepatic macrophages to treat liver diseases. J Hepatol. 66:1300–1312. 2017. View Article : Google Scholar : PubMed/NCBI |