Capsaicin: Physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions (Review)
- Authors:
- Mihaela Adriana Ilie
- Constantin Caruntu
- Mircea Tampa
- Simona-Roxana Georgescu
- Clara Matei
- Carolina Negrei
- Rodica-Mariana Ion
- Carolina Constantin
- Monica Neagu
- Daniel Boda
-
Affiliations: Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania, Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania, Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania, Department of Toxicology, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020956, Romania, The National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Bucharest 060021, Romania, Department of Immunology, ‘Victor Babes’ National Institute of Pathology, Bucharest 050096, Romania - Published online on: April 19, 2019 https://doi.org/10.3892/etm.2019.7513
- Pages: 916-925
-
Copyright: © Ilie et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Dubin AE and Patapoutian A: Nociceptors: The sensors of the pain pathway. J Clin Invest. 120:3760–3772. 2010. View Article : Google Scholar : PubMed/NCBI | |
Căruntu C, Negrei C, Ghiţă MA, Căruntu A, Bădărău AI, Buraga I, Boda D, Albu A and Brănişteanu D: Capsaicin, a hot topic in skin pharmacology and physiology. Farmacia. 63:487–491. 2015. | |
du Jardin KG, Gregersen LS, Røsland T, Uggerhøj KH, Petersen LJ, Arendt-Nielsen L and Gazerani P: Assessment of pain response in capsaicin-induced dynamic mechanical allodynia using a novel and fully automated brushing device. Pain Res Manag. 18:6–10. 2013. View Article : Google Scholar : PubMed/NCBI | |
Caruntu C, Boda D, Musat S, Caruntu A, Poenaru E, Calenic B, Savulescu-Fiedler I, Draghia A, Rotaru M and Badarau AI: Stress effects on cutaneous nociceptive nerve fibers and their neurons of origin in rats. Rom Biotechnol Lett. 19:9517–9530. 2014. | |
Szallasi A and Blumberg PM: Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev. 51:159–212. 1999.PubMed/NCBI | |
Derry S, Rice AS, Cole P, Tan T and Moore RA: Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 1:CD0073932017.PubMed/NCBI | |
Ständer S, Moormann C, Schumacher M, Buddenkotte J, Artuc M, Shpacovitch V, Brzoska T, Lippert U, Henz BM, Luger TA, et al: Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol. 13:129–139. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nolano M, Simone DA, Wendelschafer-Crabb G and Kennedy WR: Decreased sensation and loss of epidermal nerve fibers following repeated topical application of capsaicin in humans. Soc Neurosci Abstr. 22:18021996. | |
Simone DA, Nolano M, Johnson T, Wendelschafer-Crabb G and Kennedy WR: Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: Correlation with sensory function. J Neurosci. 18:8947–8959. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mankowski C, Poole CD, Ernault E, Thomas R, Berni E, Currie CJ, Treadwell C, Calvo JI, Plastira C, Zafeiropoulou E, et al: Effectiveness of the capsaicin 8% patch in the management of peripheral neuropathic pain in European clinical practice: The ASCEND study. BMC Neurol. 17:802017. View Article : Google Scholar : PubMed/NCBI | |
Burness CB and McCormack PL: Capsaicin 8% patch: A review in peripheral neuropathic pain. Drugs. 76:123–134. 2016. View Article : Google Scholar : PubMed/NCBI | |
Haanpää M, Cruccu G, Nurmikko TJ, McBride WT, Docu Axelarad A, Bosilkov A, Chambers C, Ernault E and Abdulahad AK: Capsaicin 8% patch versus oral pregabalin in patients with peripheral neuropathic pain. Eur J Pain. 20:316–328. 2016. View Article : Google Scholar : PubMed/NCBI | |
Giménez-Milà M, Videla S, Navarro MA, Faulí A, Ojeda A, Bogdanovich A, Moreno LA, Hernández-Cera C and Busquets C: Assessment of the feasibility of high-concentration capsaicin patches in the pain unit of a tertiary hospital for a population of mixed refractory peripheral neuropathic pain syndromes in non-diabetic patients. BMC Anesthesiol. 14:1202014. View Article : Google Scholar : PubMed/NCBI | |
Zis P, Apsokardos A, Isaia C, Sykioti P and Vadalouca A: Posttraumatic and postsurgical neuropathic pain responsive to treatment with capsaicin 8% topical patch. Pain Physician. 17:E213–E218. 2014.PubMed/NCBI | |
Serrano A, Torres D, Veciana M, Caro C, Montero J and Mayoral V: Quantitative thermal testing profiles as a predictor of treatment response to topical capsaicin in patients with localized neuropathic pain. Pain Res Treat. 2017:74259072017.PubMed/NCBI | |
Bauchy F, Mouraux A, Deumens R, Leerink M, Ulpiano Trillig A, le Polain de Waroux B, Steyaert A, Joëlle QL and Forget P: Feasibility of topical applications of natural high-concentration capsaicinoid solutions in patients with peripheral neuropathic pain: A retrospective analysis. Pain Res Manag. 2016:97030362016. View Article : Google Scholar : PubMed/NCBI | |
Baranidharan G, Das S and Bhaskar A: A review of the high-concentration capsaicin patch and experience in its use in the management of neuropathic pain. Ther Adv Neurol Disorder. 6:287–297. 2013. View Article : Google Scholar | |
Yong YL, Tan LT, Ming LC, Chan KG, Lee LH, Goh BH and Khan TM: The effectiveness and safety of topical capsaicin in postherpetic neuralgia: A systematic review and meta-analysis. Front Pharmacol. 7:5382017. View Article : Google Scholar : PubMed/NCBI | |
Boyd K, Shea SM and Patterson JW: The role of capsaicin in dermatology. In: Capsaicin as a Therapeutic Molecule. Springer; Basel: pp. 293–306. 2014, PubMed/NCBI | |
Ostrovsky DA: Single treatment with capsaicin 8% patch may reduce pain and sleep interference up to 12 weeks in patients with painful diabetic peripheral neuropathy. Explore (NY). 13:351–353. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gálvez R, Navez ML, Moyle G, Maihöfner C, Stoker M, Ernault E, Nurmikko TJ and Attal N: Capsaicin 8% patch repeat treatment in nondiabetic peripheral neuropathic pain: A 52-week, open-label, single-arm, safety study. Clin J Pain. 33:921–931. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kiani J, Ahmad Nasrollahi S, Esna-Ashari F, Fallah P and Sajedi F: Amitriptyline 2% cream vs. capsaicin 0.75% cream in the treatment of painful diabetic neuropathy (Double blind, randomized clinical trial of efficacy and safety). Iran J Pharm Res. 14:1263–1268. 2015.PubMed/NCBI | |
Kulkantrakorn K, Lorsuwansiri C and Meesawatsom P: 0.025% capsaicin gel for the treatment of painful diabetic neuropathy: A randomized, double-blind, crossover, placebo-controlled trial. Pain Pract. 13:497–503. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brown S, Simpson DM, Moyle G, Brew BJ, Schifitto G, Larbalestier N, Orkin C, Fisher M, Vanhove GF and Tobias JK: NGX-4010, a capsaicin 8% patch, for the treatment of painful HIV-associated distal sensory polyneuropathy: Integrated analysis of two phase III, randomized, controlled trials. AIDS Res Ther. 10:52013. View Article : Google Scholar : PubMed/NCBI | |
Simpson DM, Brown S, Tobias JK and Vanhove GF; NGX-4010 C107 Study Group, : NGX-4010, a capsaicin 8% dermal patch, for the treatment of painful HIV-associated distal sensory polyneuropathy: Results of a 52-week open-label study. Clin J Pain. 30:134–142. 2014.PubMed/NCBI | |
Feller L, Fourie J, Bouckaert M, Khammissa RAG, Ballyram R and Lemmer J: Burning mouth syndrome: Aetiopathogenesis and principles of management. Pain Res Manag. 2017:19262692017. View Article : Google Scholar : PubMed/NCBI | |
Campbell BK, Fillingim RB, Lee S, Brao R, Price DD and Neubert JK: Effects of high-dose capsaicin on TMD subjects: A randomized clinical study. JDR Clin Trans Res. 2:58–65. 2017. View Article : Google Scholar : PubMed/NCBI | |
Filipczak-Bryniarska I, Krzyzewski RM, Kucharz J, Michalowska-Kaczmarczyk A, Kleja J, Woron J, Strzepek K, Kazior L, Wordliczek J, Grodzicki T, et al: High-dose 8% capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy: Single-center experience. Med Oncol. 34:1622017. View Article : Google Scholar : PubMed/NCBI | |
Casanueva B, Rodero B, Quintial C, Llorca J and González-Gay MA: Short-term efficacy of topical capsaicin therapy in severely affected fibromyalgia patients. Rheumatol Int. 33:2665–2670. 2013. View Article : Google Scholar : PubMed/NCBI | |
Deal CL, Schnitzer TJ, Lipstein E, Seibold JR, Stevens RM, Levy MD, Albert D and Renold F: Treatment of arthritis with topical capsaicin: A double-blind trial. Clin Ther. 13:383–395. 1991.PubMed/NCBI | |
Laslett LL and Jones G: Capsaicin for osteoarthritis pain. In: Capsaicin as a Therapeutic Molecule. Springer; Basel: pp. 277–291. 2014, PubMed/NCBI | |
Caselli A, Spallone V, Marfia GA, Battista C, Pachatz C, Veves A and Uccioli L: Validation of the nerve axon reflex for the assessment of small nerve fibre dysfunction. J Neurol Neurosurg Psychiatry. 77:927–932. 2006. View Article : Google Scholar : PubMed/NCBI | |
Căruntu C and Boda D: Evaluation through in vivo reflectance confocal microscopy of the cutaneous neurogenic inflammatory reaction induced by capsaicin in human subjects. J Biomed Opt. 17:0850032012. View Article : Google Scholar : PubMed/NCBI | |
Căruntu C, Negrei C, Boda D, Constantin C, Căruntu A and Neagu M: Biotechnological advances for diagnosis of peripheral diabetic neuropathy. Rom Biotechnol Lett. 19:9846–9858. 2014. | |
Adriana Ghita M, Caruntu C, Lixandru D, Pitea A, Batani A and Boda D: The quest for novel biomarkers in early diagnosis of diabetic neuropathy. Curr Proteomics. 14:86–99. 2017. View Article : Google Scholar | |
Fattori V, Hohmann MS, Rossaneis AC, Pinho-Ribeiro FA and Verri WA: Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules. 21:8442016. View Article : Google Scholar | |
Rollyson WD, Stover CA, Brown KC, Perry HE, Stevenson CD, McNees CA, Ball JG, Valentovic MA and Dasgupta P: Bioavailability of capsaicin and its implications for drug delivery. J Control Release. 196:96–105. 2014. View Article : Google Scholar : PubMed/NCBI | |
Reyes-Escogido ML, Gonzalez-Mondragon EG and Vazquez-Tzompantzi E: Chemical and pharmacological aspects of capsaicin. Molecules. 16:1253–1270. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bode AM and Dong Z: The two faces of capsaicin. Cancer Res. 71:2809–2814. 2011. View Article : Google Scholar : PubMed/NCBI | |
North H: Colorimetric determination of capsaicin in oleoresin of capsicum. Anal Chem. 21:934–936. 1949. View Article : Google Scholar | |
Hartman KT: A rapid gas-liquid chromatographic determination for capsaicin in capsicum spices. J Food Sci. 35:543–547. 1970. View Article : Google Scholar | |
Cooper TH, Guzinski JA and Fisher C: Improved high-performance liquid chromatography method for the determination of major capsaicinoids in capsicum oleoresins. J Agric Food Chem. 39:2253–2256. 1991. View Article : Google Scholar | |
Iwai K, Suzuki T, Fujiwake H and Oka S: Simultaneous microdetermination of capsaicin and its four analogues by using high-performance liquid chromatography and gas chromatography - mass spectrometry. J Chromatogr A. 172:303–311. 1979. View Article : Google Scholar | |
Nyberg NT, Baumann H and Kenne L: Application of solid-phase extraction coupled to an NMR flow-probe in the analysis of HPLC fractions. Magn Reson Chem. 39:236–240. 2001. View Article : Google Scholar | |
Nikolaeva DA: Spectrophotometric determination of capsaicin in peppers (Capsicum annuum L.). Biokhim. Metody Analiza Plodov; Kishinev: pp. 99–102. 1984 | |
Pryakhin OR, Tkach VI, Golovkin VA, Gladyshev VV and Kuleshova ND: Method for determination of the total amount of capsaicinoids in thick red pepper extract by amperometric titration. U.S.S.R. 90:48803301992. | |
Laskaridou-Monnerville A: Determination of capsaicin and dihydrocapsaicin by micellar electrokinetic capillary chromatography and its application to various species of Capsicum, Solanaceae. J Chromatogr A. 838:293–302. 1999. View Article : Google Scholar : PubMed/NCBI | |
Korel F, Baǧdatlioǧlu N, Balaban MÖ and Hişil Y: Ground red peppers: Capsaicinoids content, Scoville scores, and discrimination by an electronic nose. J Agric Food Chem. 50:3257–3261. 2002. View Article : Google Scholar : PubMed/NCBI | |
Way RM: Official Analytical Methods of the American SpiceTrade Association. 3. American Spice Trade Association; Washington, DC: pp. 51–52. 1985 | |
Stipcovich T, Barbero GF, Ferreiro-González M, Palma M and Barroso CG: Fast analysis of capsaicinoids in Naga Jolokia extracts (Capsicum chinense) by high-performance liquid chromatography using fused core columns. Food Chem. 239:217–224. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Lu YM, Yu B, Tan CP and Cui B: Extraction and purification of capsaicin from capsicum oleoresin using an aqueous two-phase system combined with chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 1063:11–17. 2017. View Article : Google Scholar : PubMed/NCBI | |
Darré L and Domene C: Binding of capsaicin to the TRPV1 ion channel. Mol Pharm. 12:4454–4465. 2015. View Article : Google Scholar : PubMed/NCBI | |
Srinivasan K: Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: A review. Crit Rev Food Sci Nutr. 56:1488–1500. 2016. View Article : Google Scholar : PubMed/NCBI | |
Clapham DE: TRP channels as cellular sensors. Nature. 426:517–524. 2003. View Article : Google Scholar : PubMed/NCBI | |
Szolcsányi J and Jancsó-Gábor A: Sensory effects of capsaicin congeners I. Relationship between chemical structure and pain-producing potency of pungent agents. Arzneimittelforschung. 25:1877–1881. 1975.PubMed/NCBI | |
Montell C, Birnbaumer L and Flockerzi V: The TRP channels, a remarkably functional family. Cell. 108:595–598. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ferrer-Montiel A, García-Martínez C, Morenilla-Palao C, García-Sanz N, Fernández-Carvajal A, Fernández-Ballester G and Planells-Cases R: Molecular architecture of the vanilloid receptor. Insights for drug design. Eur J Biochem. 271:1820–1826. 2004. View Article : Google Scholar : PubMed/NCBI | |
García-Sanz N, Fernández-Carvajal A, Morenilla-Palao C, Planells-Cases R, Fajardo-Sánchez E, Fernández-Ballester G and Ferrer-Montiel A: Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J Neurosci. 24:5307–5314. 2004. View Article : Google Scholar : PubMed/NCBI | |
Song S, Ayon RJ, Yamamura A, Yamamura H, Dash S, Babicheva A, Tang H, Sun X, Cordery AG, Khalpey Z, et al: Capsaicin-induced Ca2+ signaling is enhanced via upregulated TRPV1 channels in pulmonary artery smooth muscle cells from patients with idiopathic PAH. Am J Physiol Lung Cell Mol Physiol. 312:L309–L325. 2017. View Article : Google Scholar : PubMed/NCBI | |
Caterina MJ and Julius D: The vanilloid receptor: A molecular gateway to the pain pathway. Annu Rev Neurosci. 24:487–517. 2001. View Article : Google Scholar : PubMed/NCBI | |
Morenilla-Palao C, Planells-Cases R, García-Sanz N and Ferrer-Montiel A: Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem. 279:25665–25672. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kárai LJ, Russell JT, Iadarola MJ and Oláh Z: Vanilloid receptor 1 regulates multiple calcium compartments and contributes to Ca2+-induced Ca2+ release in sensory neurons. J Biol Chem. 279:16377–16387. 2004. View Article : Google Scholar : PubMed/NCBI | |
Marshall IC, Owen DE, Cripps TV, Davis JB, McNulty S and Smart D: Activation of vanilloid receptor 1 by resiniferatoxin mobilizes calcium from inositol 1,4,5-trisphosphate-sensitive stores. Br J Pharmacol. 138:172–176. 2003. View Article : Google Scholar : PubMed/NCBI | |
Vrechi TA, Crunfli F, Costa AP and Torrão AS: Cannabinoid receptor type 1 agonist ACEA protects neurons from death and attenuates endoplasmic reticulum stress-related apoptotic pathway signaling. Neurotox Res. 33:846–855. 2018. View Article : Google Scholar : PubMed/NCBI | |
Van Der Stelt M and Di Marzo V: Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur J Biochem. 271:1827–1834. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim SR, Lee DY, Chung ES, Oh UT, Kim SU and Jin BK: Transient receptor potential vanilloid subtype 1 mediates cell death of mesencephalic dopaminergic neurons in vivo and in vitro. J Neurosci. 25:662–671. 2005. View Article : Google Scholar : PubMed/NCBI | |
Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, Randall AD and Davis JB: The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol. 129:227–230. 2000. View Article : Google Scholar : PubMed/NCBI | |
Marinelli S, Di Marzo V, Florenzano F, Fezza F, Viscomi MT, van der Stelt M, Bernardi G, Molinari M, Maccarrone M and Mercuri NB: N-arachidonoyl-dopamine tunes synaptic transmission onto dopaminergic neurons by activating both cannabinoid and vanilloid receptors. Neuropsychopharmacology. 32:298–308. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D, et al: Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like substances. Proc Natl Acad Sci USA. 97:6155–6160. 2000. View Article : Google Scholar : PubMed/NCBI | |
Eberhardt MJ, Schillers F, Eberhardt EM, Risser L, de la Roche J, Herzog C, Echtermeyer F and Leffler A: Reactive metabolites of acetaminophen activate and sensitize the capsaicin receptor TRPV1. Sci Rep. 7:127752017. View Article : Google Scholar : PubMed/NCBI | |
Smutzer G and Devassy RK: Integrating TRPV1 receptor function with capsaicin psychophysics. Adv Pharmacol Sci. 2016:15124572016.PubMed/NCBI | |
Elokely K, Velisetty P, Delemotte L, Palovcak E, Klein ML, Rohacs T and Carnevale V: Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin. Proc Natl Acad Sci USA. 113:E137–E145. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nagy I, Friston D, Valente JS, Torres Perez JV and Andreou AP: Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel. Prog Drug Res. 68:39–76. 2014.PubMed/NCBI | |
Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI and Julius D: The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 21:531–543. 1998. View Article : Google Scholar : PubMed/NCBI | |
Moreira FA, Aguiar DC, Terzian AL, Guimarães FS and Wotjak CT: Cannabinoid type 1 receptors and transient receptor potential vanilloid type 1 channels in fear and anxiety-two sides of one coin? Neuroscience. 204:186–192. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ryu S, Liu B and Qin F: Low pH potentiates both capsaicin binding and channel gating of VR1 receptors. J Gen Physiol. 122:45–61. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV and Julius D: Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature. 411:957–962. 2001. View Article : Google Scholar : PubMed/NCBI | |
Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S and Tominaga M: Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain. 1:32005. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Huang J and McNaughton PA: NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 24:4211–4223. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa H and Hiura A: Four possible itching pathways related to the TRPV1 channel, histamine, PAR-2 and serotonin. Malays J Med Sci. 20:5–12. 2013.PubMed/NCBI | |
Bertrand H, Kyriazis M, Reeves KD, Lyftogt J and Rabago D: Topical mannitol reduces capsaicin-induced pain: Results of a pilot-level, double-blind, randomized controlled trial. PM R. 7:1111–1117. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luvisetto S, Vacca V and Cianchetti C: Analgesic effects of botulinum neurotoxin type A in a model of allyl isothiocyanate- and capsaicin-induced pain in mice. Toxicon. 94:23–28. 2015. View Article : Google Scholar : PubMed/NCBI | |
Matak I, Rossetto O and Lacković Z: Botulinum toxin type A selectivity for certain types of pain is associated with capsaicin-sensitive neurons. Pain. 155:1516–1526. 2014. View Article : Google Scholar : PubMed/NCBI | |
Arout CA, Perrino AC Jr, Ralevski E, Acampora G, Koretski J, Limoncelli D, Newcomb J and Petrakis IL: Effect of intravenous ethanol on capsaicin-induced hyperalgesia in human subjects. Alcohol Clin Exp Res. 40:1425–1429. 2016. View Article : Google Scholar : PubMed/NCBI | |
Filippi A, Caruntu C, Gheorghe RO, Deftu A, Amuzescu B and Ristoiu V: Catecholamines reduce transient receptor potential vanilloid type 1 desensitization in cultured dorsal root ganglia neurons. J Physiol Pharmacol. 67:843–850. 2016.PubMed/NCBI | |
Tominaga M, Wada M and Masu M: Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA. 98:6951–6956. 2001. View Article : Google Scholar : PubMed/NCBI | |
Amadesi S, Nie J, Vergnolle N, Cottrell GS, Grady EF, Trevisani M, Manni C, Geppetti P, McRoberts JA, Ennes H, et al: Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci. 24:4300–4312. 2004. View Article : Google Scholar : PubMed/NCBI | |
Matta JA, Miyares RL and Ahern GP: TRPV1 is a novel target for omega-3 polyunsaturated fatty acids. J Physiol. 578:397–411. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sowa NA, Street SE, Vihko P and Zylka MJ: Prostatic acid phosphatase reduces thermal sensitivity and chronic pain sensitization by depleting phosphatidylinositol 4,5-bisphosphate. J Neurosci. 30:10282–10293. 2010. View Article : Google Scholar : PubMed/NCBI | |
Premkumar LS and Ahern GP: Induction of vanilloid receptor channel activity by protein kinase C. Nature. 408:985–990. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS and Gereau RW IV: cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron. 35:721–731. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wu J, Fang L and Willis WD: The effects of protein phosphatase inhibitors on the duration of central sensitization of rat dorsal horn neurons following injection of capsaicin. Mol Pain. 2:232006. View Article : Google Scholar : PubMed/NCBI | |
Por ED, Samelson BK, Belugin S, Akopian AN, Scott JD and Jeske NA: PP2B/calcineurin-mediated desensitization of TRPV1 does not require AKAP150. Biochem J. 432:549–556. 2010. View Article : Google Scholar : PubMed/NCBI | |
Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H and Tominaga M: Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA. 100:8002–8006. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pecze L, Blum W and Schwaller B: Mechanism of capsaicin receptor TRPV1-mediated toxicity in pain-sensing neurons focusing on the effects of Na(+)/Ca(2+) fluxes and the Ca(2+)-binding protein calretinin. Biochim Biophys Acta. 1833:1680–1691. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A and Noguchi K: Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol. 493:596–606. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lumpkin EA and Caterina MJ: Mechanisms of sensory transduction in the skin. Nature. 445:858–865. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hong S, Morrow TJ, Paulson PE, Isom LL and Wiley JW: Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J Biol Chem. 279:29341–29350. 2004. View Article : Google Scholar : PubMed/NCBI | |
Michael GJ and Priestley JV: Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. J Neurosci. 19:1844–1854. 1999. View Article : Google Scholar : PubMed/NCBI | |
Chung MK and Campbell JN: Use of capsaicin to treat pain: Mechanistic and therapeutic considerations. Pharmaceuticals (Basel). 9:662016. View Article : Google Scholar | |
Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, et al: Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 405:183–187. 2000. View Article : Google Scholar : PubMed/NCBI | |
Julius D and Basbaum AI: Molecular mechanisms of nociception. Nature. 413:203–210. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mezey E, Tóth ZE, Cortright DN, Arzubi MK, Krause JE, Elde R, Guo A, Blumberg PM and Szallasi A: Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci USA. 97:3655–3660. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fernandes ES, Fernandes MA and Keeble JE: The functions of TRPA1 and TRPV1: Moving away from sensory nerves. Br J Pharmacol. 166:510–521. 2012. View Article : Google Scholar : PubMed/NCBI | |
Roosterman D, Goerge T, Schneider SW, Bunnett NW and Steinhoff M: Neuronal control of skin function: The skin as a neuroimmunoendocrine organ. Physiol Rev. 86:1309–1379. 2006. View Article : Google Scholar : PubMed/NCBI | |
Southall MD, Li T, Gharibova LS, Pei Y, Nicol GD and Travers JB: Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther. 304:217–222. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kim SJ, Lee SA, Yun SJ, Kim JK, Park JS, Jeong HS, Lee JH, Moon SJ and Won YH: Expression of vanilloid receptor 1 in cultured fibroblast. Exp Dermatol. 15:362–367. 2006. View Article : Google Scholar : PubMed/NCBI | |
Treede RD, Meyer RA, Raja SN and Campbell JN: Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol. 38:397–421. 1992. View Article : Google Scholar : PubMed/NCBI | |
Southall MD and Vasko MR: Prostaglandin receptor subtypes, EP3C and EP4, mediate the prostaglandin E2-induced cAMP production and sensitization of sensory neurons. J Biol Chem. 276:16083–16091. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gábor M and Rázga Z: Development and inhibition of mouse ear oedema induced with capsaicin. Agents Actions. 36:83–86. 1992. View Article : Google Scholar : PubMed/NCBI | |
Lee YM, Kim YK and Chung JH: Increased expression of TRPV1 channel in intrinsically aged and photoaged human skin in vivo. Exp Dermatol. 18:431–436. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee YM, Kang SM and Chung JH: The role of TRPV1 channel in aged human skin. J Dermatol Sci. 65:81–85. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee YM, Kim YK, Kim KH, Park SJ, Kim SJ and Chung JH: A novel role for the TRPV1 channel in UV-induced matrix metalloproteinase (MMP)-1 expression in HaCaT cells. J Cell Physiol. 219:766–775. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bíró T, Maurer M, Modarres S, Lewin NE, Brodie C, Acs G, Acs P, Paus R and Blumberg PM: Characterization of functional vanilloid receptors expressed by mast cells. Blood. 91:1332–1340. 1998.PubMed/NCBI | |
Căruntu C, Boda D, Musat S, Căruntu A and Mandache E: Stress-induced mast cell activation in glabrous and hairy skin. Mediators Inflamm. 2014:1059502014. View Article : Google Scholar : PubMed/NCBI | |
Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, Lee CH, Kim M and Oh U: TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci. 27:2331–2337. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bodó E, Bíró T, Telek A, Czifra G, Griger Z, Tóth BI, Mescalchin A, Ito T, Bettermann A, Kovács L, et al: A hot new twist to hair biology: Involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am J Pathol. 166:985–998. 2005. View Article : Google Scholar : PubMed/NCBI | |
Holzer P: Local effector functions of capsaicin-sensitive sensory nerve endings: Involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience. 24:739–768. 1988. View Article : Google Scholar : PubMed/NCBI | |
Richardson JD and Vasko MR: Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther. 302:839–845. 2002. View Article : Google Scholar : PubMed/NCBI | |
Birklein F and Schmelz M: Neuropeptides, neurogenic inflammation and complex regional pain syndrome (CRPS). Neurosci Lett. 437:199–202. 2008. View Article : Google Scholar : PubMed/NCBI | |
Maggi CA and Meli A: The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol. 19:1–43. 1988. View Article : Google Scholar : PubMed/NCBI | |
Botchkarev VA, Eichmüller S, Peters EM, Pietsch P, Johansson O, Maurer M and Paus R: A simple immunofluorescence technique for simultaneous visualization of mast cells and nerve fibers reveals selectivity and hair cycle-dependent changes in mast cell - nerve fiber contacts in murine skin. Arch Dermatol Res. 289:292–302. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ansel JC, Brown JR, Payan DG and Brown MA: Substance P selectively activates TNF-alpha gene expression in murine mast cells. J Immunol. 150:4478–4485. 1993.PubMed/NCBI | |
Kowalski ML and Kaliner MA: Neurogenic inflammation, vascular permeability, and mast cells. J Immunol. 140:3905–3911. 1988.PubMed/NCBI | |
Luo D, Zhang YW, Peng WJ, Peng J, Chen QQ, Li D, Deng HW and Li YJ: Transient receptor potential vanilloid 1-mediated expression and secretion of endothelial cell-derived calcitonin gene-related peptide. Regul Pept. 150:66–72. 2008. View Article : Google Scholar : PubMed/NCBI | |
Price RC, Gandhi W, Nadeau C, Tarnavskiy R, Qu A, Fahey E, Stone L and Schweinhardt P: Characterization of a novel capsaicin/heat ongoing pain model. Eur J Pain. 22:370–384. 2018. View Article : Google Scholar : PubMed/NCBI | |
Szolcsányi J: Capsaicin and sensory neurones: A historical perspective. In: Capsaicin as a Therapeutic Molecule. Springer; Basel: pp. 1–37. 2014 | |
Simone DA, Ngeow JY, Putterman GJ and LaMotte RH: Hyperalgesia to heat after intradermal injection of capsaicin. Brain Res. 418:201–203. 1987. View Article : Google Scholar : PubMed/NCBI | |
LaMotte RH, Shain CN, Simone DA and Tsai EF: Neurogenic hyperalgesia: Psychophysical studies of underlying mechanisms. J Neurophysiol. 66:190–211. 1991. View Article : Google Scholar : PubMed/NCBI | |
Torebjörk HE, Lundberg LE and LaMotte RH: Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J Physiol. 448:765–780. 1992. View Article : Google Scholar : PubMed/NCBI | |
Simone DA and Ochoa J: Early and late effects of prolonged topical capsaicin on cutaneous sensibility and neurogenic vasodilatation in humans. Pain. 47:285–294. 1991. View Article : Google Scholar : PubMed/NCBI | |
Carpenter SE and Lynn B: Vascular and sensory responses of human skin to mild injury after topical treatment with capsaicin. Br J Pharmacol. 73:755–758. 1981. View Article : Google Scholar : PubMed/NCBI | |
Schmelz M, Schmid R, Handwerker HO and Torebjörk HE: Encoding of burning pain from capsaicin-treated human skin in two categories of unmyelinated nerve fibres. Brain. 123:560–571. 2000. View Article : Google Scholar : PubMed/NCBI | |
Simone DA, Baumann TK and LaMotte RH: Dose-dependent pain and mechanical hyperalgesia in humans after intradermal injection of capsaicin. Pain. 38:99–107. 1989. View Article : Google Scholar : PubMed/NCBI | |
Serra J, Campero M and Ochoa J: Flare and hyperalgesia after intradermal capsaicin injection in human skin. J Neurophysiol. 80:2801–2810. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kinnman E, Nygårds EB and Hansson P: Peripheral α-adrenoreceptors are involved in the development of capsaicin induced ongoing and stimulus evoked pain in humans. Pain. 69:79–85. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ma XL, Zhang FX, Dong F, Bao L and Zhang X: Experimental evidence for alleviating nociceptive hypersensitivity by single application of capsaicin. Mol Pain. 11:222015. View Article : Google Scholar : PubMed/NCBI | |
White JPM, Urban L and Nagy I: TRPV1 function in health and disease. Curr Pharm Biotechnol. 12:130–144. 2011. View Article : Google Scholar : PubMed/NCBI | |
Amaya F, Shimosato G, Nagano M, Ueda M, Hashimoto S, Tanaka Y, Suzuki H and Tanaka M: NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia. Eur J Neurosci. 20:2303–2310. 2004. View Article : Google Scholar : PubMed/NCBI | |
Urban L, White JPM and Nagy I: Molecular structure of transient receptor potential vanilloid type 1 ion channel (TRPV1). Curr Pharm Biotechnol. 12:115–121. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tympanidis P, Casula MA, Yiangou Y, Terenghi G, Dowd P and Anand P: Increased vanilloid receptor VR1 innervation in vulvodynia. Eur J Pain. 8:129–133. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yilmaz Z, Renton T, Yiangou Y, Zakrzewska J, Chessell IP, Bountra C and Anand P: Burning mouth syndrome as a trigeminal small fibre neuropathy: Increased heat and capsaicin receptor TRPV1 in nerve fibres correlates with pain score. J Clin Neurosci. 14:864–871. 2007. View Article : Google Scholar : PubMed/NCBI | |
Haanpää M and Treede RD: Capsaicin for neuropathic pain: Linking traditional medicine and molecular biology. Eur Neurol. 68:264–275. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ji RR, Samad TA, Jin SX, Schmoll R and Woolf CJ: p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron. 36:57–68. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jordt SE, Tominaga M and Julius D: Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci USA. 97:8134–8139. 2000. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Zhang X and McNaughton PA: Inflammatory pain: The cellular basis of heat hyperalgesia. Curr Neuropharmacol. 4:197–206. 2006. View Article : Google Scholar : PubMed/NCBI | |
Szallasi A and Blumberg PM: Specific binding of resiniferatoxin, an ultrapotent capsaicin analog, by dorsal root ganglion membranes. Brain Res. 524:106–111. 1990. View Article : Google Scholar : PubMed/NCBI | |
Bleakman D, Brorson JR and Miller RJ: The effect of capsaicin on voltage-gated calcium currents and calcium signals in cultured dorsal root ganglion cells. Br J Pharmacol. 101:423–431. 1990. View Article : Google Scholar : PubMed/NCBI | |
Docherty RJ, Robertson B and Bevan S: Capsaicin causes prolonged inhibition of voltage-activated calcium currents in adult rat dorsal root ganglion neurons in culture. Neuroscience. 40:513–521. 1991. View Article : Google Scholar : PubMed/NCBI | |
Dray A, Bettaney J and Forster P: Actions of capsaicin on peripheral nociceptors of the neonatal rat spinal cord-tail in vitro: Dependence of extracellular ions and independence of second messengers. Br J Pharmacol. 101:727–733. 1990. View Article : Google Scholar : PubMed/NCBI | |
Anand P, Bloom SR and McGregor GP: Topical capsaicin pretreatment inhibits axon reflex vasodilatation caused by somatostatin and vasoactive intestinal polypeptide in human skin. Br J Pharmacol. 78:665–669. 1983. View Article : Google Scholar : PubMed/NCBI | |
Bjerring P and Arendt-Nielsen L: Inhibition of histamine skin flare reaction following repeated topical applications of capsaicin. Allergy. 45:121–125. 1990. View Article : Google Scholar : PubMed/NCBI | |
Tóth-Kása I, Jancsó G, Bognár A, Husz S and Obál F Jr: Capsaicin prevents histamine-induced itching. Int J Clin Pharmacol Res. 6:163–169. 1986.PubMed/NCBI | |
Winter J, Bevan S and Campbell EA: Capsaicin and pain mechanisms. Br J Anaesth. 75:157–168. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hartel M, di Mola FF, Selvaggi F, Mascetta G, Wente MN, Felix K, Giese NA, Hinz U, Di Sebastiano P, Büchler MW, et al: Vanilloids in pancreatic cancer: Potential for chemotherapy and pain management. Gut. 55:519–528. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shin CY, Shin J, Kim BM, Wang MH, Jang JH, Surh YJ and Oh U: Essential role of mitochondrial permeability transition in vanilloid receptor 1-dependent cell death of sensory neurons. Mol Cell Neurosci. 24:57–68. 2003. View Article : Google Scholar : PubMed/NCBI | |
Athanasiou A, Smith PA, Vakilpour S, Kumaran NM, Turner AE, Bagiokou D, Layfield R, Ray DE, Westwell AD, Alexander SP, et al: Vanilloid receptor agonists and antagonists are mitochondrial inhibitors: How vanilloids cause non-vanilloid receptor mediated cell death. Biochem Biophys Res Commun. 354:50–55. 2007. View Article : Google Scholar : PubMed/NCBI | |
Buck SH and Burks TF: The neuropharmacology of capsaicin: Review of some recent observations. Pharmacol Rev. 38:179–226. 1986.PubMed/NCBI | |
Chung K, Klein CM and Coggeshall RE: The receptive part of the primary afferent axon is most vulnerable to systemic capsaicin in adult rats. Brain Res. 511:222–226. 1990. View Article : Google Scholar : PubMed/NCBI | |
Wood JN, Coote PR, Minhas A, Mullaney I, McNeill M and Burgess GM: Capsaicin-induced ion fluxes increase cyclic GMP but not cyclic AMP levels in rat sensory neurones in culture. J Neurochem. 53:1203–1211. 1989. View Article : Google Scholar : PubMed/NCBI |