1
|
Vachani A, Sequist LV and Spira A: AJRCCM:
100-year anniversary. The shifting landscape for lung cancer: Past,
present, and future. Am J Resp Crit Care. 195:1150–1160. 2017.
View Article : Google Scholar
|
2
|
An Z, Chen Y, Zhang R, Song Y, Sun J, He
J, Bai J, Dong L, Zhan Q and Abliz Z: Integrated ionization
approach for RRLC-MS/MS-based metabonomics: Finding potential
biomarkers for lung cancer. J Proteome Res. 9:4071–4081. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Beger RD: A review of applications of
metabolomics in cancer. Metabolites. 3:552–574. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Deberardinis RJ and Thompson CB: Cellular
metabolism and disease: What do metabolic outliers teach us? Cell.
148:1132–1144. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lin HM, Barnett MP, Roy NC, Joyce NI, Zhu
S, Armstrong K, Helsby NA, Ferguson LR and Rowan DD: Metabolomic
analysis identifies inflammatory and noninflammatory metabolic
effects of genetic modification in a mouse model of Crohn's
disease. J Proteome Res. 9:1965–1975. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dutta M, Joshi M, Srivastava S, Lodh I,
Chakravarty B and Chaudhury K: A metabonomics approach as a means
for identification of potential biomarkers for early diagnosis of
endometriosis. Mol Biosyst. 8:3281–3287. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xu J, Chen Y, Zhang R, Song Y, Cao J, Bi
N, Wang J, He J, Bai J, Dong L, et al: Global and targeted
metabolomics of esophageal squamous cell carcinoma discovers
potential diagnostic and therapeutic biomarkers. Mol Cell
Proteomics. 12:1306–1318. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cascino A, Muscaritoli M, Cangiano C,
Conversano L, Laviano A, Ariemma S, Meguid MM and Rossi Fanelli F:
Plasma amino acid imbalance in patients with lung and breast
cancer. Anticancer Res. 15:507–510. 1995.PubMed/NCBI
|
9
|
Kubota A, Meguid MM and Hitch DC: Amino
acid profiles correlate diagnostically with organ site in three
kinds of malignant tumors. Cancer. 69:2343–2348. 1992. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lai HS, Lee JC, Lee PH, Wang ST and Chen
WJ: Plasma free amino acid profile in cancer patients. Semin Cancer
Biol. 15:267–276. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Maeda J, Higashiyama M, Imaizumi A,
Nakayama T, Yamamoto H, Daimon T, Yamakado M, Imamura F and Kodama
K: Possibility of multivariate function composed of plasma amino
acid profiles as a novel screening index for non-small cell lung
cancer: A case control study. BMC Cancer. 10:6902010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Rocha CM, Carrola J, Barros AS, Gil AM,
Goodfellow BJ, Carreira IM, Bernardo J, Gomes A, Sousa V, Carvalho
L and Duarte IF: Metabolic signatures of lung cancer in biofluids:
NMR-based metabonomics of blood plasma. J Proteome Res.
10:4314–4324. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Miyamoto S, Taylor SL, Barupal DK, Taguchi
A, Wohlgemuth G, Wikoff WR, Yoneda KY, Gandara DR, Hanash SM, Kim K
and Fiehn O: Systemic metabolomic changes in blood samples of lung
cancer patients identified by gas chromatography time-of-flight
mass spectrometry. Metabolites. 5:192–210. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wen T, Gao L, Wen Z, Wu C, Tan CS, Toh WZ
and Ong CN: Exploratory investigation of plasma metabolomics in
human lung adenocarcinoma. Mol Biosyst. 9:2370–2378. 2013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Miyagi Y, Higashiyama M, Gochi A, Akaike
M, Ishikawa T, Miura T, Saruki N, Bando E, Kimura H, Imamura F, et
al: Plasma free amino acid profiling of five types of cancer
patients and its application for early detection. PLoS One.
6:e241432011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhao Q, Cao Y, Wang Y, Hu C, Hu A, Ruan L,
Bo Q, Liu Q, Chen W, Tao F, et al: Plasma and tissue free amino
acid profiles and their concentration correlation in patients with
lung cancer. Asia Pac J Clin Nutr. 23:429–436. 2014.PubMed/NCBI
|
17
|
Ni J, Xu L, Li W and Wu L: Simultaneous
determination of thirteen kinds of amino acid and eight kinds of
acylcarnitine in human serum by LC-MS/MS and its application to
measure the serum concentration of lung cancer patients. Biomed
Chromatog. 30:1796–1806. 2016. View
Article : Google Scholar
|
18
|
Haake P and Allen GW: Studies on
phosphorylation by phosphoroguanidinates. The mechanism of action
of creatine: ATP transphosphorylase (creatine kinase). Proc Natl
Acad Sci USA. 68:2691–2693. 1971. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kurihara S, Oda S, Kumagai H and Suzuki H:
Gamma-glutamyl-gamma-aminobutyrate hydrolase in the putrescine
utilization pathway of Escherichia coli K-12. FEMS Microbiol Lett.
256:318–323. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kurihara S, Oda S, Kato K, Kim HG,
Koyanagi T, Kumagai H and Suzuki H: A novel putrescine utilization
pathway involves gamma-glutamylated intermediates of Escherichia
coli K-12. J Biol Chem. 280:4602–4608. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lehninger AL: SMPDB: Lehninger principles
of biochemistry. 4th. New York: WH Freeman; 2005
|
22
|
Salway JG: Metabolism at a glance. 3rd
edition. Blackwell Pub; Alden, MA: 2004
|
23
|
Dalbey RE and Robinson C: Protein
translocation into and across the bacterial plasma membrane and the
plant thylakoid membrane. Trends Biochem Sci. 24:17–22. 1999.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Berks BC, Sargent F and Palmer T: The Tat
protein export pathway. Mol Microbiol. 35:260–274. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wexler M, Sargent F, Jack RL, Stanley NR,
Bogsch EG, Robinson C, Berks BC and Palmer T: TatD is a cytoplasmic
protein with DNase activity. No requirement for TatD family
proteins in sec-independent protein export. J Biol Chem.
275:16717–16722. 2000. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jongbloed JD, Martin U, Antelmann H,
Hecker M, Tjalsma H, Venema G, Bron S, van Dijl JM and Müller J:
TatC is a specificity determinant for protein secretion via the
twin-arginine translocation pathway. J Biol Chem. 275:41350–41357.
2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Marini JC and Didelija IC: Arginine
depletion by arginine deiminase does not affect whole protein
metabolism or muscle fractional protein synthesis rate in mice.
PLoS One. 10:e01198012015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wheatley DN: Controlling cancer by
restricting arginine availability-arginine-catabolizing enzymes as
anticancer agents. Anticancer Drugs. 15:825–833. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang B, Bailey WM, Kopper TJ, Orr MB,
Feola DJ and Gensel JC: Azithromycin drives alternative macrophage
activation and improves recovery and tissue sparing in contusion
spinal cord injury. J Neuroinflammation. 12:2182015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Katusic ZS: Role of nitric oxide signal
transduction pathway in regulation of vascular tone. Int Angiol.
11:14–19. 1992.PubMed/NCBI
|
31
|
Grimm EA, Sikora AG and Ekmekcioglu S:
Molecular pathways: Inflammation-associated nitric-oxide production
as a cancer-supporting redox mechanism and a potential therapeutic
target. Clin Cancer Res. 19:5557–5563. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Morbidelli L, Donnini S and Ziche M: Role
of nitric oxide in tumor angiogenesis. Cancer Treat Res.
117:155–167. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Rees WD and Hay SM: The biosynthesis of
threonine by mammalian cells: Expression of a complete bacterial
biosynthetic pathway in an animal cell. Biochem J. 309:999–1007.
1995. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jacques SL, Nieman C, Bareich D, Broadhead
G, Kinach R, Honek JF and Wright GD: Characterization of yeast
homoserine dehydrogenase, an antifungal target: The invariant
histidine 309 is important for enzyme integrity. Biochim Biophys
Acta. 1544:28–41. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bröer S: Amino acid transport across
mammalian intestinal and renal epithelia. Physiol Rev. 88:249–286.
2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bröer S; Apical transporters for neutral
amino acids, : Physiology and pathophysiology. Physiology
(Bethesda). 23:95–103. 2008.PubMed/NCBI
|
37
|
Hayden MR and Tyagi SC: Uric acid: A new
look at an old risk marker for cardiovascular disease, metabolic
syndrome, and type 2 diabetes mellitus: The urate redox shuttle.
Nutr Metab (Lond). 1:102004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Itahana Y, Han R, Barbier S, Lei Z, Rozen
S and Itahana K: The uric acid transporter SLC2A9 is a direct
target gene of the tumor suppressor p53 contributing to antioxidant
defense. Oncogene. 34:1799–1810. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dziaman T, Banaszkiewicz Z, Roszkowski K,
Gackowski D, Wisniewska E, Rozalski R, Foksinski M, Siomek A,
Speina E, Winczura A, et al: 8-Oxo-7,8-dihydroguanine and uric acid
as efficient predictors of survival in colon cancer patients. Int J
Cancer. 134:376–383. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Walling J: From methotrexate to pemetrexed
and beyond. A review of the pharmacodynamic and clinical properties
of antifolates. Invest New Drugs. 24:37–77. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Desmoulin SK, Hou Z, Gangjee A and
Matherly LH: The human proton-coupled folate transporter: Biology
and therapeutic applications to cancer. Cancer Biol Ther.
13:1355–1373. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Gallego-Ortega D, Ramirez de Molina A,
Ramos MA, Valdes-Mora F, Barderas MG, Sarmentero-Estrada J and
Lacal JC: Differential role of human choline kinase alpha and beta
enzymes in lipid metabolism: Implications in cancer onset and
treatment. PLoS One. 4:e78192009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Alatorre-Cobos F, Cruz-Ramirez A, Hayden
CA, Pérez-Torres CA, Chauvin AL, Ibarra-Laclette E, Alva-Cortés E,
Jorgensen RA and Herrera-Estrella L: Translational regulation of
Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the
phylogenetically conserved upstream open reading frame 30. J Exp
Bot. 63:5203–5221. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Henneberry AL, Wistow G and McMaster CR:
Cloning, genomic organization, and characterization of a human
cholinephosphotransferase. J Biol Chem. 275:29808–29815. 2000.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Cellarier E, Durando X, Vasson MP, Farges
MC, Demiden A, Maurizis JC, Madelmont JC and Chollet P: Methionine
dependency and cancer treatment. Cancer Treat Rev. 29:489–499.
2003. View Article : Google Scholar : PubMed/NCBI
|
46
|
Stefanska B, Karlic H, Varga F,
Fabianowska-Majewska K and Haslberger A: Epigenetic mechanisms in
anti-cancer actions of bioactive food components-the implications
in cancer prevention. Br J Pharmacol. 167:279–297. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Guo HY, Herrera H, Groce A and Hoffman RM:
Expression of the biochemical defect of methionine depend in fresh
patient tumors in primary histoculture. Cancer Res. 53:2479–2483.
1993.PubMed/NCBI
|
48
|
Warnecke PM and Bestor TH: Cytosine
methylation and human cancer. Curr Opin Oncol. 12:68–73. 2000.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Xu H, Zhang Y, Guo X, Ren S, Staempfli AA,
Chiao J, Jiang W and Zhao G: Isoleucine biosynthesis in Leptospira
interrogans serotype lai strain 56601 proceeds via a
threonine-independent pathway. J Bacteriol. 186:5400–5409. 2004.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Komatsu H, Nishihira T, Chin M, Doi H,
Shineha R, Mori S and Satomi S: Effects of caloric intake on
anticancer therapy in rats with valine depleted amino acid
imbalance. Nutr Cancer. 28:107–112. 1997. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhang N, Li K, Sun X, Shou N and Jiang X:
Metabolism change of gastric cancer in L-leucine/L-valine
imbalance. Chin J Curr Adv Gen Surg. 4:148–151. 2001.
|
52
|
Parekh VR, Traxler RW and Sobek JM:
N-Alkane oxidation enzymes of a pseudomonad. Appl Environ
Microbiol. 33:881–884. 1977.PubMed/NCBI
|
53
|
Harris FT, Rahman SM, Hassanein M, Qian J,
Hoeksema MD, Chen H, Eisenberg R, Chaurand P, Caprioli RM, Shiota M
and Massion PP: Acyl-coenzyme A-binding protein regulates
beta-oxidation required for growth and survival of non-small cell
lung cancer. Cancer Prev Res (Phila). 7:748–757. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Ganti S, Taylor SL, Kim K, Hoppel CL, Guo
L, Yang J, Evans C and Weiss RH: Urinary acylcarnitines are altered
in human kidney cancer. Int J Cancer. 130:2791–2800. 2012.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Ohshima H and Bartsch H: Chronic
infections and inflammatory processes as cancer risk factors:
Possible role of nitric oxide in carcinogenesis. Mutat Res.
305:253–264. 1994. View Article : Google Scholar : PubMed/NCBI
|
56
|
Ding Y, Wang H, Niu J, Luo M, Gou Y, Miao
L, Zou Z and Cheng Y: Induction of ROS overload by alantolactone
prompts oxidative DNA damage and apoptosis in colorectal cancer
cells. Int J Mol Sci. 17:5582016. View Article : Google Scholar : PubMed/NCBI
|
57
|
Greenberg AK, Rimal B, Felner K, Zafar S,
Hung J, Eylers E, Phalan B, Zhang M, Goldberg JD, Crawford B, et
al: S-adenosylmethionine as a biomarker for the early detection of
lung cancer. Chest. 132:1247–1252. 2007. View Article : Google Scholar : PubMed/NCBI
|
58
|
Sakkas LI, Bogdanos DP, Katsiari C and
Platsoucas CD: Anti-citrullinated peptides as autoantigens in
rheumatoid arthritis-relevance to treatment. Autoimmun Rev.
13:1114–1120. 2014. View Article : Google Scholar : PubMed/NCBI
|
59
|
Yang GY, Taboada S and Liao J: Induced
nitric oxide synthase as a major player in the oncogenic
transformation of inflamed tissue. Methods Mol Biol. 512:119–156.
2009. View Article : Google Scholar : PubMed/NCBI
|