1
|
Yang G, Wang Y, Zeng Y, Gao GF, Liang X,
Zhou M, Wan X, Yu S, Jiang Y, Naghavi M, et al: Rapid health
transition in China, 1990–2010: Findings from the global burden of
disease study 2010. Lancet. 381:1987–2015. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lozano R, Naghavi M, Foreman K, Lim S,
Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et
al: Global and regional mortality from 235 causes of death for 20
age groups in 1990 and 2010: A systematic analysis for the global
burden of disease study 2010. Lancet. 380:2095–2128. 2012.
View Article : Google Scholar : PubMed/NCBI
|
3
|
He Y, Li Y, Chen Y, Feng L and Nie Z:
Homocysteine level and risk of different stroke types: A
meta-analysis of prospective observational studies. Nutr Metab
Cardiovasc Dis. 24:1158–1165. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhao M, Wang X, He M, Qin X, Tang G, Huo
Y, Li J, Fu J, Huang X, Cheng X, et al: Homocysteine and stroke
risk: Modifying effect of methylenetetrahydrofolate reductase C677T
polymorphism and folic acid intervention. Stroke. 48:1183–1190.
2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Boldyrev AA: Molecular mechanisms of
homocysteine toxicity. Biochemistry (Mosc). 74:589–598. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Wallin A, Sjögren M, Edman A, Blennow K
and Regland B: Symptoms, vascular risk factors and blood-brain
barrier function in relation to CT white-matter changes in
dementia. Eur Ncuro1. 44:229–235. 2000.
|
7
|
Lominadze D, Roberts AM, Tyagi N, Moshal
KS and Tyagi SC: Homocy-steine causes cerebrovascular leakage in
mice. Am J Physiol Heart Circ Physiol. 290:H1206–H1213. 2006.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Kamath AF, Chauhan AK, Kisucka J, Dole VS,
Loscalzo J, Handy DE and Wagner DD: Elevated levels of homocysteine
compromise blood-brain barrier integrity in mice. Blood.
107:591–593. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lee H, Kim JM, Kim HJ, Lee I and Chang N:
Folic acid supplementation can reduce the endothelial damage in rat
brain microvasculature due to hyperhomocysteinemia. J Nutr.
135:544–548. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tyagi SC, Lominadze D and Roberts AM:
Homocysteine in microvascular endothelial cell barrier
permeability. Cell Biochem Biophys. 43:37–44. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mo J, Yang R, Li F, Zhang X, He B, Zhang
Y, Chen P and Shen Z: Scutellarin protects against vascular
endothelial dysfunction and prevents atherosclerosis via
antioxidation. Phytomedicine. 42:66–74. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yuan Y, Fang M, Wu CY and Ling EA:
Scutellarin as a potential therapeutic agent for microglia-mediated
neuroinflammation in cerebral ischemia. Neuromolecular Med.
18:264–273. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Du X, Chen C, Zhang M, Cai D, Sun J, Yang
J, Hu N, Ma C, Zhang L, Zhang J and Yang W: Scutellarin reduces
endothelium dysfunction through the PKG-I pathway. Evid Based
Complement Alternat Med. 2015:4302712015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guo LL, Guan ZZ, Huang Y, Wang YL and Shi
JS: The neurotoxicity of β-amyloid peptide toward rat brain is
associated with enhanced oxidative stress, inflammation and
apoptosis, all of which can be attenuated by scutellarin. Exp
Toxicol Pathol. 65:579–584. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Conlan RS, Pisano S, Oliveira MI, Ferrari
M and Mendes Pinto I: Exosomes as reconfigurable therapeutic
systems. Trends Mol Med. 23:636–650. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG and
Chopp M: Systemic administration of exosomes released from
mesenchymal stromal cells promote functional recovery and
neurovascular plasticity after stroke in rats. J Cereb Blood Flow
Metab. 33:1711–1715. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Janas AM, Sapoń K and Janas T, Stowell MH
and Janas T: Exosomes and other extracellular vesicles in neural
cells and neurodegenerative diseases. Biochim Biophys Acta.
1858:1139–1151. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lehotsky J, Petras M, Kovalska M, Tothova
B, Drgova A and Kaplan P: Mechanisms involved in the ischemic
tolerance in brain: Effect of the homocysteine. Cell Mol Neurobiol.
35:7–15. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu CY, Fang M, Karthikeyan A, Yuan Y and
Ling EA: Scutellarin attenuates microglia-mediated
neuroinflammation and promotes astrogliosis in cerebral ischemia-a
therapeutic consideration. Curr Med Chem. 24:718–727. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Corrigan F, Mander KA, Leonard AV and Vink
R: Neurogenic inflammation after traumatic brain injury and its
potentiation of classical inflammation. J Neuroinflammation.
13:2642016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sun X, Chen RC, Yang ZH, Sun GB, Wang M,
Ma XJ, Yang LJ and Sun XB: Taxifolin prevents diabetic
cardiomyopathy in vivo and in vitro by inhibition of oxidative
stress and cell apoptosis. Food Chem Toxicol. 63:221–232. 2014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang J, Ju B, Yan Y, Xu H, Wu S, Zhu D,
Cao D and Hu J: Neuroprotective effects of phenylethanoid
glycosides in an in vitro model of Alzheimer's disease. Exp
Ther Med. 13:2423–2428. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang JS, Bojovic D, Chen Y and Lindgren
CA: Homocysteine sensitizes the mouse neuromuscular junction to
oxidative stress by nitric oxide. Neuroreport. 29:1030–1035. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang X, Cui L, Joseph J, Jiang B, Pimental
D, Handy DE, Liao R and Loscalzoa J: Homocysteine induces
cardiomyocyte dysfunction and apoptosis through p38 MAPK-mediated
increase in oxidant stress. J Mol Cell Cardiol. 52:753–760. 2012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Sydow K, Hornig B, Arakawa N, Bode-Böger
SM, Tsikas D, Münzel T and Böger RH: Endothclial dysfunction in
patients with peripheral artcrial disease and chronic
hyperhomocys-teinemia:potential role of ADMA. Vasc Med. 9:93–101.
2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Stremersch S, Vandenbroucke RE, Van
Wonterghem E, Hendrix A, De Smedt SC and Raemdonck K: Comparing
exosome-like vesicles with liposomes for the functional cellular
delivery of small RNAs. J Control Release. 232:51–61. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang HG and Grizzle WE: Exosomes: A novel
pathway of local and distant intercellular communication that
facilitates the growth and metastasis of neoplastic lesions. Am J
Pathol. 184:28–41. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Jiao H, Wang Z, Liu Y, Wang P and Xue Y:
Specific role of tight junction proteins claudin-5, occludin, and
ZO-1 of the blood-brain barrier in a focal cerebral ischemic
insult. J Mol Neurosci. 44:130–139. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li Y, Li Q, Pan CS, Yan L, Hu BH, Liu YY,
Yang L, Huang P, Zhao SY, Wang CS, et al: Bushen huoxue attenuates
diabetes-induced cognitive impairment by improvement of cerebral
microcirculation: Involvement of RhoA/ROCK/moesin and src signaling
pathways. Front Physiol. 9:5272018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Furuse M, Hirase T, Itoh M, Nagafuchi A,
Yonemura S and Tsukita S: Occludin: A novel integral membrane
protein localizing at tight junctions. J Cell Biol. 123:1777–1788.
1993. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ohtsuki S, Sato S, Yamaguchi H, Kamoi M,
Asashima T and Terasaki T: Exogenous expression of claudin-5
induces barrier properties in cultured rat brain capillary
endothelial cells. J Cell Physiol. 210:81–86. 2007. View Article : Google Scholar : PubMed/NCBI
|