1
|
Brunt EM and Tiniakos DG: Histopathology
of nonalcoholic fatty liver disease. World J Gastroenterol.
16:5286–5296. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Angulo P: GI epidemiology: Nonalcoholic
fatty liver disease. Aliment Pharmacol Ther. 25:883–889. 2007.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Law K and Brunt EM: Nonalcoholic fatty
liver disease. Clin Liver Dis. 14:591–604. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yilmaz Y: Review article: Is non-alcoholic
fatty liver disease a spectrum, or are steatosis and non-alcoholic
steatohepatitis distinct conditions? Aliment Pharmacol Ther.
36:815–823. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Samuel VT and Shulman GI: Mechanisms for
insulin resistance: Common threads and missing links. Cell.
148:852–871. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Khan R, Bril F, Cusi K and Newsome PN:
Modulation of insulin resistance in NAFLD. Hepatology hep.30429.
2018. View Article : Google Scholar
|
7
|
Lonardo A, Lugari S, Ballestri S,
Nascimbeni F, Baldelli E and Maurantonio M: A round trip from
nonalcoholic fatty liver disease to diabetes: Molecular targets to
the rescue? Acta Diabetol. 56:385–396. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kim JY, Park KJ, Hwang JY, Kim GH, Lee D,
Lee YJ, Song EH, Yoo MG, Kim BJ, Suh YH, et al: Activating
transcription factor 3 is a target molecule linking hepatic
steatosis to impaired glucose homeostasis. J Hepatol. 67:349–359.
2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gérard P: Gut microbiota and obesity. Cell
Mol Life Sci. 73:147–162. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Saad MJ, Santos A and Prada PO: Linking
gut microbiota and inflammation to obesity and insulin resistance.
Physiology (Bethesda). 31:283–293. 2016.PubMed/NCBI
|
11
|
Chi Y, Lin Y, Lu Y, Huang Q, Ye G and Dong
S: Gut microbiota dysbiosis correlates with a low-dose
PCB126-induced dyslipidemia and non-alcoholic fatty liver disease.
Sci Total Environ. 653:274–282. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Safari Z and Gérard P: The links between
the gut microbiome and non-alcoholic fatty liver disease (NAFLD).
Cell Mol Life Sci. 76:1541–1558. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ma J, Zhou Q and Li H: Gut microbiota and
nonalcoholic fatty liver disease: Insights on mechanisms and
therapy. Nutrients. 9:1127–1147. 2017. View Article : Google Scholar
|
14
|
Cho MS, Kim SY, Suk KT and Kim BY:
Modulation of gut microbiome in nonalcoholic fatty liver disease:
Pro-, pre-, syn-, and antibiotics. J Microbiol. 56:855–867. 2018.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Sedighi M, Razavi S, Navab-Moghadam F,
Khamseh ME, Alaei-Shahmiri F, Mehrtash A and Amirmozafari N:
Comparison of gut microbiota in adult patients with type 2 diabetes
and healthy individuals. Microb Pathog. 111:362–369. 2017.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Bagarolli RA, Tobar N, Oliveira AG, Araújo
TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K, Guadagnini D,
Prada PO, et al: Probiotics modulate gut microbiota and improve
insulin sensitivity in DIO mice. J Nutr Biochem. 50:16–25. 2017.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Cani PD, Bibiloni R, Knauf C, Waget A,
Neyrinck AM, Delzenne NM and Burcelin R: Changes in gut microbiota
control metabolic endotoxemia-induced inflammation in high-fat
diet-induced obesity and diabetes in mice. Diabetes. 57:1470–1481.
2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhou Y, Zheng T, Chen H, Li Y, Huang H,
Chen W, Du Y, He J, Li Y, Cao J, et al: Microbial intervention as a
novel target in treatment of non-alcoholic fatty liver disease
progression. Cell Physiol Biochem. 51:2123–2135. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Perumpail BJ, Li AA, John N, Sallam S,
Shah ND, Kwong W, Cholankeril G, Kim D and Ahmed A: The therapeutic
implications of the gut microbiome and probiotics in patients with
NAFLD. Diseases. 7:1–12. 2019. View Article : Google Scholar
|
20
|
Chen S, Shen X, Cheng S, Li P, Du J, Chang
Y and Meng H: Evaluation of garlic cultivars for polyphenolic
content and antioxidant properties. PLoS One. 8:e797302013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim MJ, Yoo YC, Kim HJ, Shin SK, Sohn EJ,
Min AY, Sung NY and Kim MR: aged black garlic exerts
anti-inflammatory effects by decreasing no and proinflammatory
cytokine production with less cytoxicity in LPS-stimulated raw
264.7 macrophages and LPS-induced septicemia mice. J Med Food.
17:1057–1063. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jang HJ, Lee HJ, Yoon DK, Ji DS, Kim JH
and Lee CH: Antioxidant and antimicrobial activities of fresh
garlic and aged garlic by-products extracted with different
solvents. Food Sci Biotechnol. 27:219–225. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bordia T, Mohammed N, Thomson M and Ali M:
An evaluation of garlic and onion as antithrombotic agents.
Prostaglandins Leukot Essent Fatty Acids. 54:183–186. 1996.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Alpers DH: Garlic and its potential for
prevention of colorectal cancer and other conditions. Curr Opin
Gastroenterol. 25:116–121. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Miki S, Inokuma KI, Takashima M, Nishida
M, Sasaki Y, Ushijima M, Suzuki JI and Morihara N: Aged garlic
extract suppresses the increase of plasma glycated albumin level
and enhances the AMP-activated protein kinase in adipose tissue in
TSOD mice. Mol Nutr Food Res. 61:5–11. 2017. View Article : Google Scholar
|
26
|
Amagase H, Petesch BL, Matsuura H, Kasuga
S and Itakura Y: Intake of garlic and its bioactive components. J
Nutr. 131:955S–962S. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yeh YY and Liu L: Cholesterol-lowering
effect of garlic extracts and organosulfur compounds: Human and
animal studies. J Nutr. 131:989S–993S. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang BH, Zuzel KA, Rahman K and Billington
D: Treatment with aged garlic extract protects against bromobenzene
toxicity to precision cut rat liver slices. Toxicology.
132:215–225. 1999. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sumioka I, Matsura T and Yamada K:
Therapeutic effect of S-allylmercaptocysteine on
acetaminophen-induced liver injury in mice. Eur J Pharmacol.
433:177–185. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kodai S, Takemura S, Minamiyama Y, Hai S,
Yamamoto S, Kubo S, Yoshida Y, Niki E, Okada S, Hirohashi K and
Suehiro S: S-allyl cysteine prevents CCl(4)-induced acute liver
injury in rats. Free Radic Res. 41:489–497. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Takemura S, Minamiyama Y, Kodai S,
Shinkawa H, Tsukioka T, Okada S, Azuma H and Kubo S: S-Allyl
cysteine improves nonalcoholic fatty liver disease in type 2
diabetes Otsuka Long-Evans Tokushima Fatty rats via regulation of
hepatic lipogenesis and glucose metabolism. J Clin Biochem Nutr.
53:94–101. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ried K, Travica N and Sali A: The effect
of Kyolic aged garlic extract on gut microbiota, inflammation, and
cardiovascular markers in hypertensives: The GarGIC Trial. Front
Nutr. 5:122–136. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lieber CS, Leo MA, Mak KM, Xu Y, Cao Q,
Ren C, Ponomarenko A and DeCarli LM: Model of nonalcoholic
steatohepatitis. Am J Clin Nutr. 79:502–509. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Brix AE, Elgavish A, Nagy TR, Gower BA,
Rhead WJ and Wood PA: Evaluation of liver fatty acid oxidation in
the leptin-deficient obese mouse. Mol Genet Metab. 75:219–226.
2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wortham M, He L, Gyamfi M, Copple BL and
Wan YJ: The transition from fatty liver to NASH associates with
SAMe depletion in db/db mice fed a methionine choline-deficient
diet. Dig Dis Sci. 53:2761–2774. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Okumura K, Ikejima K, Kon K, Abe W,
Yamashina S, Enomoto N, Takei Y and Sato N: Exacerbation of dietary
steatohepatitis and fibrosis in obese, diabetic KK-A(y) mice.
Hepatol Res. 36:217–228. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Noge I, Kagawa Y and Maeda T: A new
diabetic mouse model derived from the ddY strain. Biol Pharm Bull.
33:988–992. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Maeda T, Noge I and Kagawa Y: Infiltration
of M1 macrophages into adipose tissue of ddY-H mice preceding
spontaneous appearances of insulin resistance. Biol Pharm Bull.
36:825–832. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Satoh H, Ide N, Kagawa Y and Maeda T:
Hepatic steatosis with relation to increased expression of
peroxisome proliferator-activated receptor-γ in insulin resistant
mice. Biol Pharm Bull. 36:616–623. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ide N, Arisawa K, Ogura K, Kagawa Y and
Maeda T: Age-dependent onset of insulin resistance in
insulin-resistant mice. Biol Pharm Bull. 38:1925–1934. 2015.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Rakoff-Nahoum S, Paglino J,
Eslami-Varzaneh F, Edberg S and Medzhitov R: Recognition of
commensal microflora by toll-like receptors is required for
intestinal homeostasis. Cell. 118:229–241. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Nagashima K, Hisada T, Sato M and
Mochizuki J: Application of new primer-enzyme combinations to
terminal restriction fragment length polymorphism profiling of
bacterial populations in human feces. Appl Environ Microbiol.
69:1251–1262. 2003. View Article : Google Scholar : PubMed/NCBI
|
43
|
Nagashima K, Mochizuki J, Hisada T, Suzuki
S and Shimomura K: Phylogenetic analysis of 16s ribosomal RNA gene
sequences from human fecal microbiota and improved utility of
terminal restriction fragment length polymorphism profiring. Biosci
Microflora. 25:99–107. 2006. View Article : Google Scholar
|
44
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2((−ΔΔC(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Ferramosca A and Zara V: Modulation of
hepatic steatosis by dietary fatty acids. World J Gastroenterol.
20:1746–1755. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ried K, Travica N and Sali A: The effect
of aged garlic extract on blood pressure and other cardiovascular
risk factors in uncontrolled hypertensives: The AGE at Heart trial.
Integr Blood Press Control. 9:9–21. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Rana SV, Pal R, Vaiphei K, Sharma SK and
Ola RP: Garlic in health and disease. Nutr Res Rev. 24:60–71. 2011.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Rabhi N, Salas E, Froguel P and Annicotte
JS: Role of the unfolded protein response in β cell compensation
and failure during diabetes. J Diabetes Res. 2014:7951712014.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Memon RA, Tecott LH, Nonogaki K, Beigneux
A, Moser AH, Grunfeld C and Feingold KR: Up-regulation of
peroxisome proliferator-activated receptors (PPAR-alpha) and
PPAR-gamma messenger ribonucleic acid expression in the liver in
murine obesity: Troglitazone induces expression of
PPAR-gamma-responsive adipose tissue-specific genes in the liver of
obese diabetic mice. Endocrinology. 141:4021–4031. 2000. View Article : Google Scholar : PubMed/NCBI
|
50
|
Rahimian R, Masih-Khan E, Lo M, van
Breemen C, McManus BM and Dubé GP: Hepatic over-expression of
peroxisome proliferator activated receptor gamma2 in the ob/ob
mouse model of non-insulin dependent diabetes mellitus. Mol Cell
Biochem. 224:29–37. 2001. View Article : Google Scholar : PubMed/NCBI
|
51
|
Nagata K, Suzuki H and Sakaguchi S: Common
pathogenic mechanism in development progression of liver injury
caused by non-alcoholic or alcoholic steatohepatitis. J Toxicol
Sci. 32:453–468. 2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Compare D, Coccoli P, Rocco A, Nardone OM,
De Maria S, Cartenì M and Nardone G: Gut--liver axis: The impact of
gut microbiota on non alcoholic fatty liver disease. Nutr Metab
Cardiovasc Dis. 22:471–476. 2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
O'Hara AM and Shanahan F: The gut flora as
a forgotten organ. EMBO Rep. 7:688–693. 2006. View Article : Google Scholar : PubMed/NCBI
|
54
|
Burcelin R: Gut microbiota and immune
crosstalk in metabolic disease. Biol Aujourdhui. 211:1–18. 2017.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Logan AC, Jacka FN and Prescott SL:
Immune-microbiota interactions: dysbiosis as a global health issue.
Curr Allergy Asthma Rep. 16(13)2016.PubMed/NCBI
|
56
|
Honda K and Littman DR: The microbiota in
adaptive immune homeostasis and disease. Nature. 535:75–84. 2016.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Winer DA, Luck H, Tsai S and Winer S: The
intestinal immune system in obesity and insulin resistance. Cell
Metab. 23:413–426. 2016. View Article : Google Scholar : PubMed/NCBI
|
58
|
Suk KT and Kim DJ: Gut microbiota: Novel
therapeutic target for nonalcoholic fatty liver disease. Expert Rev
Gastroenterol Hepatol. 13:193–204. 2019. View Article : Google Scholar : PubMed/NCBI
|
59
|
Zhou W, Guo R, Guo W, Hong J, Li L, Ni L,
Sun J, Liu B, Rao P and Lv X: Monascus yellow, red and orange
pigments from red yeast rice ameliorate lipid metabolic disorders
and gut microbiota dysbiosis in Wistar rats fed on a high-fat diet.
Food Funct. 10:1073–1084. 2019. View Article : Google Scholar : PubMed/NCBI
|
60
|
Pollak M: The effects of metformin on gut
microbiota and the immune system as research frontiers.
Diabetologia. 60:1662–1667. 2017. View Article : Google Scholar : PubMed/NCBI
|