1
|
Banks PA and Freeman ML; Practice
Parameters Committee of the American College of Gastroenterology, :
Practice guidelines in acute pancreatitis. Am J Gastroenterol.
101:2379–2400. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Banks PA, Bollen TL, Dervenis C, Gooszen
HG, Johnson CD, Sarr MG, Tsiotos GG and Vege SS; AcutePancreatitis
Classification Working Group, : Classification of acute
pancreatitis-2012: Revision of the Atlanta classification and
definitions by international consensus. Gut. 62:102–111. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Kylanpaa ML, Repo H and Puolakkainen PA:
Inflammation and immunosuppression in severe acute pancreatitis.
World J Gastroenterol. 16:2867–2872. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Petrov M: Nutrition, inflammation, and
acute pancreatitis. ISRN Inflamm. 2013:3414102013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kahn SE, Haffner SM, Heise MA, Herman WH,
Holman RR, Jones NP, Kravitz BG, Lachin JM, O'Neill MC, Zinman B,
et al: Glycemic durability of rosiglitazone, metformin, or
glyburide monotherapy. N Engl J Med. 355:2427–2443. 2006.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Fryer LG, Parbu-Patel A and Carling D: The
anti-diabetic drugs rosiglitazone and metformin stimulate
amp-activated protein kinase through distinct signaling pathways. J
Biol Chem. 277:25226–25232. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ramakers JD, Verstege MI, Thuijls G, Te
VA, Mensink RP and Plat J: The ppargamma agonist rosiglitazone
impairs colonic inflammation in mice with experimental colitis. J
Clin Immunol. 27:275–283. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ji XX, Ji XJ, Li QQ, Lu XX and Luo L:
Rosiglitazone reduces apoptosis and inflammation in
lipopolysaccharide-induced human umbilical vein endothelial cells.
Med Sci Monit. 24:6200–6207. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ding F, Qiu J, Li Q, Hu J, Song C, Han C,
He H and Wang J: Effects of rosiglitazone on proliferation and
differentiation of duck preadipocytes. In Vitro Cell Dev Biol Anim.
52:174–181. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cheng Y, Li S, Wang M, Cheng C and Liu R:
Peroxisome proliferator activated receptor gamma (PPARgamma)
agonist rosiglitazone ameliorate airway inflammation by inhibiting
toll-like receptor 2 (TLR2)/Nod-like receptor with pyrin domain
containing 3 (NLRP3) inflammatory corpuscle activation in asthmatic
Mice. Med Sci Monit. 24:9045–9053. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Levi Z, Shaish A, Yacov N, Levkovitz H,
Trestman S, Gerber Y, Cohen H, Dvir A, Rhachmani R, Ravid M and
Harats D: Rosiglitazone (PPARgamma-agonist) attenuates
atherogenesis with no effect on hyperglycaemia in a combined
diabetes-atherosclerosis mouse model. Diabetes Obes Metab. 5:45–50.
2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hassumi MY, Silva-Filho VJ, Campos-Junior
JC, Vieira SM, Cunha FQ, Alves PM, Alves JB, Kawai T, Gonçalves RB
and Napimoga MH: PPAR-gamma agonist rosiglitazone prevents
inflammatory periodontal bone loss by inhibiting
osteoclastogenesis. Int Immunopharmacol. 9:1150–1158. 2009.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Lin S and Gregory RI: Microrna biogenesis
pathways in cancer. Nat Rev Cancer. 15:321–333. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Iorio MV, Visone R, Di Leva G, Donati V,
Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, et
al: Microrna signatures in human ovarian cancer. Cancer Res.
67:8699–8707. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lu J, He ML, Wang L, Chen Y, Liu X, Dong
Q, Chen YC, Peng Y, Yao KT, Kung HF and Li XP: Mir-26a inhibits
cell growth and tumorigenesis of nasopharyngeal carcinoma through
repression of ezh2. Cancer Res. 71:225–233. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kwon Y, Kim Y, Eom S, Kim M, Park D, Kim
H, Noh K, Lee H, Lee YS, Choe J, et al:
Microrna-26a/-26b-cox-2-mip-2 loop regulates allergic inflammation
and allergic inflammation-promoted enhanced tumorigenic and
metastatic potential of cancer cells. J Biol Chem. 290:14245–14266.
2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kumar A, Bhatia HS, de Oliveira AC and
Fiebich BL: Microrna-26a modulates inflammatory response induced by
toll-like receptor 4 stimulation in microglia. J Neurochem.
135:1189–1202. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Georgescu MM: PTEN tumor suppressor
network in PI3K-AKT pathway control. Genes Cancer. 1:1170–1177.
2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen L, Yu CX, Song B, Cai W, Liu C and
Guan QB: Free fatty acids mediates human umbilical vein endothelial
cells inflammation through toll-like receptor-4. Eur Rev Med
Pharmacol Sci. 22:2421–2431. 2018.PubMed/NCBI
|
21
|
Sah RP, Garg P and Saluja AK: Pathogenic
mechanisms of acute pancreatitis. Curr Opin Gastroenterol.
28:507–515. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu XQ, Dai Y, Yang Y, Huang C, Meng XM, Wu
BM and Li J: Emerging role of microRNAS in regulating macrophage
activation and polarization in immune response and inflammation.
Immunology. 148:237–248. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang X, Guan Y, Tian S, Wang Y, Sun K and
Chen Q: Mechanical and IL-1β responsive miR-365 contributes to
osteoarthritis development by targeting histone deacetylase 4. Int
J Mol Sci. 17:4362016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang H, Bei Y, Shen S, Huang P, Shi J,
Zhang J, Sun Q, Chen Y, Yang Y, Xu T, et al: miR-21-3p controls
sepsis-associated cardiac dysfunction via regulating SORBS2. J Mol
Cell Cardiol. 94:43–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sharma AR, Sharma G, Lee SS and
Chakraborty C: Mirna-regulated key components of cytokine signaling
pathways and inflammation in rheumatoid arthritis. Med Res Rev.
36:425–439. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chalhoub N and Baker SJ: PTEN and the
PI3-kinase pathway in cancer. Annu Rev Pathol. 4:127–150. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Suzuki A, Yamaguchi MT, Ohteki T, Sasaki
T, Kaisho T, Kimura Y, Yoshida R, Wakeham A, Higuchi T, Fukumoto M,
et al: T cell-specific loss of Pten leads to defects in central and
peripheral tolerance. Immunity. 14:523–534. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Paez J and Sellers WR: PI3K/PTEN/AKT
pathway. A critical mediator of oncogenic signaling. Cancer Treat
Res. 115:145–167. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Weichhart T and Saemann MD: The
PI3K/AKT/MTOR pathway in innate immune cells: Emerging therapeutic
applications. Ann Rheum Dis. 67 (Suppl 3):iii70–iii74. 2008.
View Article : Google Scholar : PubMed/NCBI
|