1
|
Kapoor M, Martel-Pelletier J, Lajeunesse
D, Pelletier JP and Fahmi H: Role of proinflammatory cytokines in
the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 7:33–42.
2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rezende MU, Hernandez AJ, Oliveira CR and
Bolliger Neto R: Experimental osteoarthritis model by means of
medial meniscectomy in rats and effects of diacerein administration
and hyaluronic acid injection. Sao Paulo Med J. 133:4–12. 2015.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Di Y, Han C, Zhao L and Ren Y: Is local
platelet-rich plasma injection clinically superior to hyaluronic
acid for treatment of knee osteoarthritis? A systematic review of
randomized controlled trials. Arthritis Res Ther. 20:1282018.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Cai D, Yin S, Yang J, Jiang Q and Cao W:
Histone deacetylase inhibition activates Nrf2 and protects against
osteoarthritis. Arthritis Res Ther. 17:2692015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jang SW, Liu X, Yepes M, Shepherd KR,
Miller GW, Liu Y, Wilson WD, Xiao G, Blanchi B, Sun YE and Ye K: A
selective TrkB agonist with potent neurotrophic activities by 7,
8-dihydroxyflavone. Proc Natl Acad Sci USA. 107:2687–2692. 2010.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Devi L and Ohno M: 7,8-dihydroxyflavone, a
small-molecule TrkB agonist, reverses memory deficits and BACE1
elevation in a mouse model of Alzheimer's disease.
Neuropsychopharmacology. 37:434–444. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Castello NA, Nguyen MH, Tran JD, Cheng D,
Green KN and LaFerla FM: 7,8-Dihydroxyflavone, a small molecule
TrkB agonist, improves spatial memory and increases thin spine
density in a mouse model of Alzheimer disease-like neuronal loss.
PLoS One. 9:e914532014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kang JS, Choi IW, Han MH, Kim GY, Hong SH,
Park C, Hwang HJ, Kim CM, Kim BW and Choi YH: The cytoprotective
effects of 7,8-dihydroxyflavone against oxidative stress are
mediated by the upregulation of Nrf2-dependent HO-1 expression
through the activation of the PI3K/Akt and ERK pathways in C2C12
myoblasts. Int J Mol Med. 36:501–510. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ryu MJ, Kang KA, Piao MJ, Kim KC, Zheng J,
Yao CW, Cha JW, Hyun CL, Chung HS, Park JC, et al: Effect of
7,8-dihydroxyflavone on the up-regulation of Nrf2-mediated heme
oxygenase-1 expression in hamster lung fibroblasts. In Vitro Cell
Dev Biol Anim. 50:549–554. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gardiner MD, Vincent TL, Driscoll C,
Burleigh A, Bou-Gharios G, Saklatvala J, Nagase H and Chanalaris A:
Transcriptional analysis of micro-dissected articular cartilage in
post-traumatic murine osteoarthritis. Osteoarthritis Cartilage.
23:616–628. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Glasson SS, Blanchet TJ and Morris EA: The
surgical destabilization of the medial meniscus (DMM) model of
osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage.
15:1061–1069. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Little CB and Hunter DJ: Post-traumatic
osteoarthritis: From mouse models to clinical trials. Nat Rev
Rheumatol. 9:485–497. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Glasson SS, Chambers MG, Van Den Berg WB
and Little CB: The OARSI histopathology initiative-recommendations
for histological assessments of osteoarthritis in the mouse.
Osteoarthritis Cartilage. 18 (Suppl 3):S17–S23. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gosset M, Berenbaum F, Thirion S and
Jacques C: Primary culture and phenotyping of murine chondrocytes.
Nat Protoc. 3:1253–1260. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Legrand C, Ahmed U, Anwar A, Rajpoot K,
Pasha S, Lambert C, Davidson RK, Clark IM, Thornalley PJ, Henrotin
Y and Rabbani N: Glycation marker glucosepane increases with the
progression of osteoarthritis and correlates with morphological and
functional changes of cartilage in vivo. Arthritis Res Ther.
20:1312018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yudoh K, Nguyen vT, Nakamura H,
Hongo-Masuko K, Kato T and Nishioka K: Potential involvement of
oxidative stress in cartilage senescence and development of
osteoarthritis: Oxidative stress induces chondrocyte telomere
instability and downregulation of chondrocyte function. Arthritis
Res Ther. 7:R380–R391. 2005. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Dalle-Donne I, Rossi R, Colombo R,
Giustarini D and Milzani A: Biomarkers of oxidative damage in human
disease. Clin Chem. 52:601–623. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Davies CM, Guilak F, Weinberg JB and
Fermor B: Reactive nitrogen and oxygen species in
interleukin-1-mediated DNA damage associated with osteoarthritis.
Osteoarthritis Cartilage. 16:624–630. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Loeser RF: Aging and osteoarthritis: The
role of chondrocyte senescence and aging changes in the cartilage
matrix. Osteoarthritis Cartilage. 17:971–979. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Goldring MB and Otero M: Inflammation in
osteoarthritis. Curr Opin Rheumatol. 23:471–478. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Loboda A, Damulewicz M, Pyza E, Jozkowicz
A and Dulak J: Role of Nrf2/HO-1 system in development, oxidative
stress response and diseases: An evolutionarily conserved
mechanism. Cell Mol Life Sci. 73:3221–3247. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Biswas C, Shah N, Muthu M, La P, Fernando
AP, Sengupta S, Yang G and Dennery PA: Nuclear heme oxygenase-1
(HO-1) modulates subcellular distribution and activation of Nrf2
impacting metabolic and anti-oxidant defenses. J Biol Chem.
289:26882–26894. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kensler TW, Wakabayashi N and Biswal S:
Cell survival responses to environmental stresses via the
Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 47:89–116.
2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Maicas N, Ferrándiz ML, Brines R, Ibáñez
L, Cuadrado A, Koenders MI, van den Berg WB and Alcaraz MJ:
Deficiency of Nrf2 accelerates the effector phase of arthritis and
aggravates joint disease. Antioxid Redox Signal. 15:889–901. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Kobayashi H, Takeno M, Saito T, Takeda Y,
Kirino Y, Noyori K, Hayashi T, Ueda A and Ishigatsubo Y: Regulatory
role of heme oxygenase 1 in inflammation of rheumatoid arthritis.
Arthritis Rheum. 54:1132–1142. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li H, Wang D, Yuan Y and Min J: New
insights on the MMP-13 regulatory network in the pathogenesis of
early osteoarthritis. Arthritis Res Ther. 19:2482017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shanmugaapriya S, van Caam A, de Kroon L,
Vitters EL, Walgreen B, van Beuningen H, Davidson EB and van der
Kraan PM: Expression of TGF-β signaling regulator RBPMS
(RNA-binding protein with multiple splicing) is regulated by IL-1β
and TGF-β superfamily members, and decreased in aged and
osteoarthritic cartilage. Cartilage. 7:333–345. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Abdullah M, Mahowald ML, Frizelle SP,
Dorman CW, Funkenbusch SC and Krug HE: The effect of
intra-articular vanilloid receptor agonists on pain behavior
measures in a murine model of acute monoarthritis. J Pain Res.
9:563–570. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Choi JW, Lee J and Park YI:
7,8-Dihydroxyflavone attenuates TNF-α-induced skin aging in Hs68
human dermal fibroblast cells via down-regulation of the MAPKs/Akt
signaling pathways. Biomed Pharmacother. 95:1580–1587. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Park HY, Kim GY, Hyun JW, Hwang HJ, Kim
ND, Kim BW and Choi YH: 7,8-Dihydroxyflavone exhibits
anti-inflammatory properties by downregulating the NF-κB and MAPK
signaling pathways in lipopolysaccharide-treated RAW264. 7 cells.
Int J Mol Med. 29:1146–1152. 2012.PubMed/NCBI
|
32
|
Park HY, Park C, Hwang HJ, Kim BW, Kim GY,
Kim CM, Kim ND and Choi YH: 7,8-Dihydroxyflavone attenuates the
release of pro-inflammatory mediators and cytokines in
lipopolysaccharide-stimulated BV2 microglial cells through the
suppression of the NF-κB and MAPK signaling pathways. Int J Mol
Med. 33:1027–1034. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Takada T, Miyaki S, Ishitobi H, Hirai Y,
Nakasa T, Igarashi K, Lotz MK and Ochi M: Bach1 deficiency reduces
severity of osteoarthritis through upregulation of heme
oxygenase-1. Arthritis Res Ther. 17:2852015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rousset F, Nguyen MV, Grange L, Morel F
and Lardy B: Heme oxygenase-1 regulates matrix metalloproteinase
MMP-1 secretion and chondrocyte cell death via Nox4 NADPH oxidase
activity in chondrocytes. PLoS One. 8:e664782013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lee TS and Chau LY: Heme oxygenase-1
mediates the anti-inflammatory effect of interleukin-10 in mice.
Nat Med. 8:240–246. 2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lee IT, Luo SF, Lee CW, Wang SW, Lin CC,
Chang CC, Chen YL, Chau LY and Yang CM: Overexpression of HO-1
protects against TNF-alpha-mediated airway inflammation by
down-regulation of TNFR1-dependent oxidative stress. Am J Pathol.
175:519–532. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen J, Chua KW, Chua CC, Yu H, Pei A,
Chua BH, Hamdy RC, Xu X and Liu CF: Antioxidant activity of
7,8-dihydroxyflavone provides neuroprotection against
glutamate-induced toxicity. Neurosci Lett. 499:181–185. 2011.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Han X, Zhu S, Wang B, Chen L, Li R, Yao W
and Qu Z: Antioxidant action of 7,8-dihydroxyflavone protects PC12
cells against 6-hydroxydopamine-induced cytotoxicity. Neurochem
Int. 64:18–23. 2014. View Article : Google Scholar : PubMed/NCBI
|