1
|
Klein R, Klein BE, Moss SE and Meuer SM:
The epidemiology of retinal vein occlusion: The beaver dam eye
study. Trans Am Ophthalmol Soc. 98:133–143. 2000.PubMed/NCBI
|
2
|
Ho M, Liu DT, Lam DS and Jonas JB: Retinal
vein occlusions, from basics to the latest treatment. Retina.
36:432–448. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sivaprasad S, Amoaku WM and Hykin P: The
royal college of ophthalmologists guidelines on retinal vein
occlusions: Executive summary. Eye (Lond). 29:1633–1638. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Hayreh SS: Retinal vein occlusion. Indian
J Ophthalmol. 42:109–132. 1994.PubMed/NCBI
|
5
|
Lee JY, Yoon YH, Kim HK, Yoon HS, Kang SW,
Kim JG, Park KH and Jo YJ; Korean RVO Study, : Baseline
characteristics and risk factors of retinal vein occlusion: A study
by the Korean RVO study group. J Korean Med Sci. 28:136–144. 2013.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Rogers S, McIntosh RL, Cheung N, Lim L,
Wang JJ, Mitchell P, Kowalski JW, Nguyen H and Wong TY;
International Eye Disease Consortium, : The prevalence of retinal
vein occlusion: Pooled data from population studies from the United
States, Europe, Asia, and Australia. Ophthalmology. 117:313–319.e1.
2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kuhli-Hattenbach C, Inge S, Lüchtenberg M
and Hattenbach LO: Coagulation disorders and the risk of retinal
vein occlusion. Thromb Haemost. 103:299–305. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Stem MS, Talwar N, Comer GM and Stein JD:
A longitudinal analysis of risk factors associated with central
retinal vein occlusion. Ophthalmology. 120:362–370. 2013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Tilleul J, Glacet-Bernard A, Coscas G,
Soubrane G and Souied EH: Underlying conditions associated with the
occurrence of retinal vein occlusion. J Fr Ophtalmol. 34:318–324.
2011.(In French). View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu Y, Yu C, Liang M, Li J, Tian L, Zhou
Y, Qin W, Li K and Jiang T: Whole brain functional connectivity in
the early blind. Brain. 130:2085–2096. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Biswal BB: Resting state fMRI: A personal
history. Neuroimage. 62:938–944. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Logothetis NK, Pauls J, Augath M, Trinath
T and Oeltermann A: Neurophysiological investigation of the basis
of the fMRI signal. Nature. 412:150–157. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ,
Liang M, Tian LX, Jiang TZ and Wang YF: Altered baseline brain
activity in children with ADHD revealed by resting-state functional
MRI. Brain Dev. 29:83–91. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li T, Liu Z, Li J, Liu Z, Tang Z, Xie X,
Yang D, Wang N, Tian J and Xian J: Altered amplitude of
low-frequency fluctuation in primary open-angle glaucoma: A
resting-state fMRI study. Invest Ophthalmol Vis Sci. 56:322–329.
2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Huang X, Zhong YL, Zeng XJ, Zhou F, Liu
XH, Hu PH, Pei CG, Shao Y and Dai XJ: Disturbed spontaneous brain
activity pattern in patients with primary angle-closure glaucoma
using amplitude of low-frequency fluctuation: A fMRI study.
Neuropsychiatr Dis Treat. 11:1877–1883. 2015.PubMed/NCBI
|
16
|
Tang A, Chen T, Zhang J, Gong Q and Liu L:
Abnormal spontaneous brain activity in patients with anisometropic
amblyopia using resting-state functional magnetic resonance
imaging. J Pediatr Ophthalmol Strabismus. 54:303–310. 2017.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang X, Li SH, Zhou FQ, Zhang Y, Zhong
YL, Cai FQ, Shao Y and Zeng XJ: Altered intrinsic regional brain
spontaneous activity in patients with comitant strabismus: A
resting-state functional MRI study. Neuropsychiatr Dis Treat.
12:1303–1308. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Huang X, Zhou FQ, Hu YX, Xu XX, Zhou X,
Zhong YL, Wang J and Wu XR: Altered spontaneous brain activity
pattern in patients with high myopia using amplitude of
low-frequency fluctuation: A resting-state fMRI study.
Neuropsychiatr Dis Treat. 12:2949–2956. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shao Y, Cai FQ, Zhong YL, Huang X, Zhang
Y, Hu PH, Pei CG, Zhou FQ and Zeng XJ: Altered intrinsic regional
spontaneous brain activity in patients with optic neuritis: A
resting-state functional magnetic resonance imaging study.
Neuropsychiatr Dis Treat. 11:3065–3073. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tan G, Huang X, Ye L, Wu AH, He LX, Zhong
YL, Jiang N, Zhou FQ and Shao Y: Altered spontaneous brain activity
patterns in patients with unilateral acute open globe injury using
amplitude of low-frequency fluctuation: A functional magnetic
resonance imaging study. Neuropsychiatr Dis Treat. 12:2015–2020.
2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li Q, Huang X, Ye L, Wei R, Zhang Y, Zhong
YL, Jiang N and Shao Y: Altered spontaneous brain activity pattern
in patients with late monocular blindness in middle-age using
amplitude of low-frequency fluctuation: A resting-state functional
MRI study. Clin Interv Aging. 11:1773–1780. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Huang X, Li D, Li HJ, Zhong YL, Freeberg
S, Bao J, Zeng XJ and Shao Y: Abnormal regional spontaneous neural
activity in visual pathway in retinal detachment patients: A
resting-state functional MRI study. Neuropsychiatr Dis Treat.
13:2849–2854. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang ZL, Zou L, Lu ZW, Xie XQ, Jia ZZ, Pan
CJ, Zhang GX and Ge XM: Abnormal spontaneous brain activity in type
2 diabetic retinopathy revealed by amplitude of low-frequency
fluctuations: A resting-state fMRI study. Clin Radiol.
72:340.e1–e7. 2017. View Article : Google Scholar
|
24
|
Pan ZM, Li HJ, Bao J, Jiang N, Yuan Q,
Freeberg S, Zhu PW, Ye L, Ma MY, Huang X and Shao Y: Altered
intrinsic brain activities in patients with acute eye pain using
amplitude of low-frequency fluctuation: A resting-state fMRI study.
Neuropsychiatr Dis Treat. 14:251–257. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Janssen MC, den Heijer M, Cruysberg JR,
Wollersheim H and Bredie SJ: Retinal vein occlusion: A form of
venous thrombosis or a complication of atherosclerosis? A
meta-analysis of thrombophilic factors. Thromb Haemost.
93:1021–1026. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li HJ, Dai XJ, Gong HH, Nie X, Zhang W and
Peng DC: Aberrant spontaneous low-frequency brain activity in male
patients with severe obstructive sleep apnea revealed by
resting-state functional MRI. Neuropsychiatr Dis Treat. 11:207–214.
2015.PubMed/NCBI
|
27
|
Yan CG, Cheung B, Kelly C, Colcombe S,
Craddock RC, Di Martino A, Li Q, Zuo XN, Castellanos FX and Milham
MP: A comprehensive assessment of regional variation in the impact
of head micromovements on functional connectomics. Neuroimage.
76:183–201. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Carter RM, O'Doherty JP, Seymour B, Koch C
and Dolan RJ: Contingency awareness in human aversive conditioning
involves the middle frontal gyrus. Neuroimage. 29:1007–1012. 2005.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Leung HC, Gore JC and Goldman-Rakic PS:
Sustained mnemonic response in the human middle frontal gyrus
during on-line strage of spatial memoranda. J Cognit Neurosci.
14:659–671. 2002. View Article : Google Scholar
|
30
|
Japee S, Holiday K, Satyshur MD, Mukai I
and Ungerleider LG: A role of right middle frontal gyrus in
reorienting of attention: A case study. Front Syst Neurosci.
9:232015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Talati A and Hirsch J: Functional
specialization within the medial frontal gyrus for perceptual
go/no-go decisions based on ‘what,’ ‘when,’ and ‘where’ related
information: An fMRI study. J Cogn Neurosci. 17:981–993. 2005.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Chang CC, Yu SC, McQuoid DR, Messer DF,
Taylor WD, Singh K, Boyd BD, Krishnan KR, MacFall JR, Steffens DC
and Payne ME: Reduction of dorsolateral prefrontal cortex gray
matter in late-life depression. Psychiatry Res. 193:1–6. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Nelson JD, Craig JP, Akpek EK, Azar DT,
Belmonte C, Bron AJ, Clayton JA, Dogru M, Dua HS, Foulks GN, et al:
TFOS DEWS II introduction. Ocul Surf. 15:269–275. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Gnanavel S and Robert RS: Diagnostic and
statistical manual of mental disorders, fifth edition, and the
impact of events scale-revised. Chest. 144:1974–1975. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Yazar Y, Bergström ZM and Simons JS:
Continuous theta burst stimulation of angular gyrus reduces
subjective recollection. PLoS One. 9:e1104142014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yazar Y, Bergström ZM and Simons JS:
Reduced multimodal integration of memory features following
continuous theta burst stimulation of angular gyrus. Brain Stimul.
10:624–629. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Martino J, Gabarrós A, Deus J, Juncadella
M, Acebes JJ, Torres A and Pujol J: Intrasurgical mapping of
complex motor function in the superior frontal gyrus. Neuroscience.
179:131–142. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Owen AM: The role of the lateral frontal
cortex in mnemonic processing: The contribution of functional
neuroimaging. Exp Brain Res. 133:33–43. 2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Goldberg I, Harel M and Malach R: When the
brain loses its self: Prefrontal inactivation during sensorimotor
processing. Neuron. 50:329–339. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Fried I, Wilson CL, MacDonald KA and
Behnke EJ: Electric current stimulates laughter. Nature.
391:6501998. View
Article : Google Scholar : PubMed/NCBI
|
41
|
Margulies DS, Vincent JL, Kelly C, Lohmann
G, Uddin LQ, Biswal BB, Villringer A, Castellanos FX, Milham MP and
Petrides M: Precuneus shares intrinsic functional architecture in
humans and monkeys. Proc Natl Acad Sci USA. 106:20069–20074. 2009.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Uchimura M, Nakano T, Morito Y, Ando H and
Kitazawa S: Automatic representation of a visual stimulus relative
to a background in the right precuneus. Eur J Neurosci.
42:1651–1659. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kraft A, Dyrholm M, Kehrer S, Kaufmann C,
Bruening J, Kathmann N, Bundesen C, Irlbacher K and Brandt SA: TMS
over the right precuneus reduces the bilateral field advantage in
visual short term memory capacity. Brain Stimul. 8:216–223. 2015.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Raichle ME, MacLeod AM, Snyder AZ, Powers
WJ, Gusnard DA and Shulman GL: A default mode of brain function.
Proc Natl Acad Sci USA. 98:676–682. 2001. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chen QL, Xu T, Yang WJ, Li YD, Sun JZ,
Wang KC, Beaty RE, Zhang QL, Zuo XN and Qiu J: Individual
differences in verbal creative thinking are reflected in the
precuneus. Neuropsychologia. 75:441–449. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Cavanna AE and Trimble MR: The precuneus:
A review of its functional anatomy and behavioural correlates.
Brain. 129:564–583. 2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Noppeney U and Price CJ: Retrieval of
visual, auditory, and abstract semantics. Neuroimage. 15:917–926.
2002. View Article : Google Scholar : PubMed/NCBI
|
48
|
Stoeter P, Bauermann T, Nickel R, Corluka
L, Gawehn J, Vucurevic G, Vossel G and Egle UT: Cerebral activation
in patients with somatoform pain disorder exposed to pain and
stress: An fMRI study. Neuroimage. 36:418–430. 2007. View Article : Google Scholar : PubMed/NCBI
|
49
|
Schunck T, Mathis A, Erb G, Namer IJ,
Demazières A and Luthringer R: Effects of lorazepam on brain
activity pattern during an anxiety symptom provocation challenge. J
Psychopharmacol. 24:701–708. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Schmahmann JD: Disorders of the
cerebellum: Ataxia, dysmetria of thought, and the cerebellar
cognitive affective syndrome. J Neuropsychiatry Clin Neurosci.
16:367–378. 2004. View Article : Google Scholar : PubMed/NCBI
|
51
|
Desmond JE and Fiez JA: Neuroimaging
studies of the cerebellum: Language, learning and memory. Trends
Cogn Sci. 2:355–362. 1998. View Article : Google Scholar : PubMed/NCBI
|
52
|
Thomann PA, Schläfer C, Seidl U, Santos
VD, Essig M and Schröder J: The cerebellum in mild cognitive
impairment and Alzheimer's disease-a structural MRI study. J
Psychiatr Res. 42:1198–1202. 2008. View Article : Google Scholar : PubMed/NCBI
|
53
|
Baldaçara L, Nery-Fernandes F, Rocha M,
Quarantini LC, Rocha GG, Guimarães JL, Araújo C, Oliveira I,
Miranda-Scippa A and Jackowski A: Is cerebellar volume related to
bipolar disorder? J Affect Disord. 135:305–309. 2011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Bledsoe JC, Semrud-Clikeman M and Pliszka
SR: Neuroanatomical and neuropsychological correlates of the
cerebellum in children with attention-deficit/hyperactivity
disorder-combined type. J Am Acad Child Adolesc Psychiatry.
50:593–601. 2011. View Article : Google Scholar : PubMed/NCBI
|
55
|
Andreasen NC, Paradiso S and O'Leary DS:
‘Cognitive dysmetria’ as an integrative theory of schizophrenia: A
dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr
Bull. 24:203–218. 1998. View Article : Google Scholar : PubMed/NCBI
|