1
|
Eichhorst ST, Muerkoster S, Weigand MA and
Krammer PH: The chemotherapeutic drug 5-fluorouracil induces
apoptosis in mouse thymocytes in vivo via activation of the
CD95(APO-1/Fas) system. Cancer Res. 61:243–248. 2001.PubMed/NCBI
|
2
|
Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray
SD, Kuszynski CA, Joshi SS and Pruess HG: Free radicals and grape
seed proanthocyanidin extract: Importance in human health and
disease prevention. Toxicology. 148:187–197. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Manente FA, Quinello C, Ferreira LS, de
Andrade CR, Jellmayer JA, Portuondo DL, Batista-Duharte A and
Carlos IZ: Experimental sporotrichosis in a
cyclophosphamide-induced immunosuppressed mice model. Med Mycol.
56:711–722. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yin J, Zhou Q, Wang L, Xu W and Zhang J:
Protective effect of extract of Mauremys mutica against
cyclophosphamide (CY)-induced suppression of immune function in
mice. Food Agr Immunol. 27:577–588. 2016. View Article : Google Scholar
|
5
|
Deng J, Zhong YF, Wu YP, Luo Z, Sun YM,
Wang GE, Kurihara H, Li YF and He RR: Carnosine attenuates
cyclophosphamide-induced bone marrow suppression by reducing
oxidative DNA damage. Redox Biol. 14:1–6. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Martello MD, David N, Matuo R, Carvalho
PC, Navarro SD, Monreal AC, Cunha-Laura AL, Cardoso CA, Kassuya CA
and Oliveira RJ: Campomanesia adamantium extract induces DNA
damage, apoptosis, and affects cyclophosphamide metabolism. Genet
Mol Res. 152016.doi: 10.4238/gmr.15027678.
|
7
|
Sun C, Yang J, Pan L, Guo N, Li B, Yao J,
Wang M, Qi C, Zhang G and Liu Z: Improvement of icaritin on
hematopoietic function in cyclophosphamide-induced myelosuppression
mice. Immunopharmacol Immunotoxicol. 40:25–34. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhou Y, Chen X, Yi R, Li G, Sun P, Qian Y
and Zhao X: Immunomodulatory effect of Tremella
polysaccharides against cyclophosphamide-induced immunosuppression
in mice. Molecules. 23(pii): E2392018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mowat AM and Agace WW: Regional
specialization within the intestinal immune system. Nat Rev
Immunol. 14:667–685. 2014. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Duerkop BA, Vaishnava S and Hooper LV:
Immune responses to the microbiota at the intestinal mucosal
surface. Immunity. 31:368–376. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zheng R, Li X, Cao B, Zuo T, Wu J, Wang J,
Xue C and Tang Q: Dietary Apostichopus japonicus enhances
the respiratory and intestinal mucosal immunity in
immunosuppressive mice. Biosci Biotechnol Biochem. 79:253–259.
2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Adhikari BM, Bajracharya A and Shrestha
AK: Comparison of nutritional properties of stinging nettle
(Urtica dioica) flour with wheat and barley flours. Food Sci
Nutr. 4:119–124. 2015. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Bakhshaee M, Mohammad Pour AH, Esmaeili M,
Jabbari Azad F, Alipour Talesh G, Salehi M and Noorollahian Mohajer
M: Efficacy of supportive therapy of allergic rhinitis by stinging
Nettle (Urtica dioica) root extract: A randomized,
double-blind, placebo-controlled, clinical trial. Iran J Pharm Res.
16 (Suppl):S112–S118. 2017.
|
14
|
El Haouari M, Bnouham M, Bendahou M, Aziz
M, Ziyyat A, Legssyer A and Mekhfi H: Inhibition of rat platelet
aggregation by Urtica dioica leaves extracts. Phytother Res.
20:568–572. 2006. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Kianbakht S, Khalighi-Sigaroodi F and
Dabaghian FH: Improved glycemic control in patients with advanced
type 2 diabetes mellitus taking Urtica dioica leaf extract:
A randomized double-blind placebo-controlled clinical trial. Clin
Lab. 59:1071–1076. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Safarinejd MR: Urtica dioica for
treatment of benign prostatic hyperplasia: A prospective,
randomized, double-blind, placebo-controlled, crossover study. J
Herb Pharmacother. 5:1–11. 2005. View Article : Google Scholar
|
17
|
Marrassini C, Davicino R, Acevedo C,
Anesini C, Gorzalczany S and Ferraro G: Vicenin-2, a potential
anti-inflammatory constituent of Urtica circularis. J Nat
Prod. 74:1503–1507. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jiang MH, Zhu L and Jiang JG:
Immunoregulatory actions of polysaccharides from Chinese herbal
medicine. Expert Opin Ther Targets. 14:1367–1402. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Saha SK and Brewer CF: Determination of
the concentrations of oligosaccharides, complex type carbohydrates,
and glycoproteins using the phenol-sulfuric acid method. Carbohydr
Res. 254:157–167. 1994. View Article : Google Scholar : PubMed/NCBI
|
20
|
Murado MA, Vazquez JA, Montemayor MI, Cabo
ML and del Pilar González M: Two mathematical models for the
correction of carbohydrate and protein interference in the
determination of uronic acids by the m-hydroxydiphenyl method.
Biotechnol Appl Biochem. 41:209–216. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bradford MM: A rapid and sensitive method
for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal Biochem. 72:248–254.
1976. View Article : Google Scholar : PubMed/NCBI
|
22
|
Han L, Suo Y, Yang Y, Meng J and Hu N:
Optimization, characterization, and biological activity of
polysaccharides from Berberis dasystachya Maxim. Int J Biol
Macromol. 85:655–666. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang Y, Liu X, Zhang J, Liu G, Liu Y, Wang
K, Yang M, Cheng H and Zhao Z: Structural characterization and in
vitro antitumor activity of polysaccharides from Zizyphus
jujuba cv. Muzao. Rsc Adv. 5:7860–7867. 2015. View Article : Google Scholar
|
24
|
Liu N, Dong Z, Zhu X, Xu H and Zhao Z:
Characterization and protective effect of Polygonatum
sibiricum polysaccharide against cyclophosphamide-induced
immunosuppression in Balb/c mice. Int J Biol Macromol. 107:796–802.
2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chai Y and Zhao M: Purification,
characterization and anti-proliferation activities of
polysaccharides extracted from Viscum coloratum (Kom.)
Nakai. Carbohydr Polym. 149:121–130. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Akbay P, Basaran AA, Undeger U and Basaran
N: In vitro immunomodulatory activity of flavonoid glycosides from
Urtica dioica L. Phytother Res. 17:34–37. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kuhn KA and Stappenbeck TS: Peripheral
education of the immune system by the colonic microbiota. Semin
Immunol. 25:364–369. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fan Y, Lu Y, Wang D, Liu J, Song X, Zhang
W, Zhao X, Nguyen TL and Hu Y: Effect of epimedium
polysaccharide-propolis flavone immunopotentiator on
immunosuppression induced by cyclophosphamide in chickens. Cell
Immunol. 281:37–43. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yu J, Cong L, Wang C, Li H, Zhang C, Guan
X, Liu P, Xie Y, Chen J and Sun J: Immunomodulatory effect of
Schisandra polysaccharides in cyclophosphamide-induced
immunocompromised mice. Exp Ther Med. 15:4755–4762. 2018.PubMed/NCBI
|
30
|
Gong Y, Wu J and Li ST: Immuno-enhancement
effects of Lycium ruthenicum Murr. polysaccharide on
cyclophosphamide-induced immunosuppression in mice. Int J Clin Exp
Med. 8:20631–20637. 2015.PubMed/NCBI
|
31
|
Chen X, Nie W, Fan S, Zhang J, Wang Y, Lu
J and Jin L: A polysaccharide from Sargassum fusiforme
protects against immunosuppression in cyclophosphamide-treated
mice. Carbohydr Polym. 90:1114–1119. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Suh HJ, Yang HS, Ra KS, Noh DO, Kwon KH,
Hwang JH and Yu KW: Peyer's patch-mediated intestinal immune system
modulating activity of pectic-type polysaccharide from peel of
Citrus unshiu. Food Chem. 138:1079–1086. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kim D, Lee J, Kim KJ, Hong HC, Shin KS and
Yu KW: Macrophage stimulating polysaccharide purified from peels of
grape (Vitis labrusca). Food Sci Biotechnol. 19:479–486.
2010. View Article : Google Scholar
|
34
|
Maynard CL, Elson CO, Hatton RD and Weaver
CT: Reciprocal interactions of the intestinal microbiota and immune
system. Nature. 489:231–241. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hall JA, Bouladoux N, Sun CM, Wohlfert EA,
Blank RB, Zhu Q, Grigg ME, Berzofsky JA and Belkaid Y: Commensal
DNA limits regulatory T cell conversion and is a natural adjuvant
of intestinal immune responses. Immunity. 29:637–649. 2008.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Maggi E: The TH1/TH2 paradigm in allergy.
Immunotechnology. 3:233–244. 1998. View Article : Google Scholar : PubMed/NCBI
|
37
|
Round JL and Mazmanian SK: The gut
microbiota shapes intestinal immune responses during health and
disease. Nat Rev Immunol. 9:313–323. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Matar P, Rozados VR, Gervasoni SI and
Scharovsky GO: Th2/Th1 switch induced by a single low dose of
cyclophosphamide in a rat metastatic lymphoma model. Cancer Immunol
Immunother. 50:588–596. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Da Silva C, Wagner C, Bonnardel J, Gorvel
JP and Lelouard H: The Peyer's patch mononuclear phagocyte system
at steady state and during infection. Front Immunol. 8:12542017.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Figueiredo RT, Bittencourt VC, Lopes LC,
Sassaki G and Barreto-Bergter E: Toll-like receptors (TLR2 and
TLR4) recognize polysaccharides of Pseudallescheria boydii
cell wall. Carbohydr Res. 356:260–264. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lin KI, Kao YY, Kuo HK, Yang WB, Chou A,
Lin HH, Yu AL and Wong CH: Reishi polysaccharides induce
immunoglobulin production through the TLR4/TLR2-mediated induction
of transcription factor Blimp-1. J Biol Chem. 281:24111–24123.
2006. View Article : Google Scholar : PubMed/NCBI
|