1
|
Dalle Carbonare L, Valenti MT, Zanatta M,
Donatelli L and Lo Cascio V: Circulating mesenchymal stem cells
with abnormal osteogenic differentiation in patients with
osteoporosis. Arthritis Rheum. 60:3356–3365. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rachner TD, Khosla S and Hofbauer LC:
Osteoporosis: Now and the future. Lancet. 377:1276–1287. 2011.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Kikuta S, Tanaka N, Kazama T, Kazama M,
Kano K, Ryu J, Tokuhashi Y and Matsumoto T: Osteogenic effects of
dedifferentiated fat cell transplantation in rabbit models of bone
defect and ovariectomy-induced osteoporosis. Tissue Eng Part A.
19:1792–1802. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lubkowska A, Dobek A, Mieszkowski J,
Garczynski W and Chlubek D: Adiponectin as a biomarker of
osteoporosis in postmenopausal women: Controversies. Dis Markers
2014. 9751782014.
|
5
|
He W, Goodkind D and Kowal P: U.S. Census
Bureau, International population reports, P95/16-1, An Aging World;
2015 Washington DC: U.S.: Government Publishing Office; 2016
|
6
|
Wang Y, Tao Y, Hyman ME, Li J and Chen Y:
Osteoporosis in china. Osteoporos Int. 20:1651–1662. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Li Y, Xuan M, Wang B, Yang J, Zhang H,
Zhang XZ, Guo XH, Lü XF, Xue QY, Yang GY, et al: Comparison of
parathyroid hormone (1–34) and elcatonin in postmenopausal women
with osteoporosis: An 18-month randomized, multicenter controlled
trial in China. Chin Med J (Engl). 126:457–463. 2013. View Article : Google Scholar : PubMed/NCBIPubMed/NCBI
|
8
|
Pouresmaeili F, Kamalidehghan B, Kamarehei
M and Goh YM: A comprehensive overview on osteoporosis and its risk
factors. Ther Clin Risk Manag. 14:2029–2049. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Marie PJ and Kassem M: Osteoblasts in
osteoporosis: Past, emerging, and future anabolic targets. Eur J
Endocrinol. 165:1–10. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ruiz-Gaspà S, Blanch-Rubió J,
Ciria-Recasens M, Monfort J, Tío L, Garcia-Giralt N, Nogués X,
Monllau JC, Carbonell-Abelló J and Pérez-Edo L: Reduced
proliferation and osteocalcin expression in osteoblasts of male
idiopathic osteoporosis. Calcif Tissue Int. 86:220–226. 2010.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Hammond SM: An overview of microRNAs. Adv
Drug Deliv Rev. 87:3–14. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Soifer HS, Rossi JJ and Saetrom P:
MicroRNAs in disease and potential therapeutic applications. Mol
Ther. 15:2070–2079. 2017. View Article : Google Scholar
|
13
|
Krol J, Loedige I and Filipowicz W: The
widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 11:597–610. 2010. View
Article : Google Scholar : PubMed/NCBI
|
14
|
O'Connell RM, Rao DS, Chaudhuri AA and
Baltimore D: Physiological and pathological roles for microRNAs in
the immune system. Nat Rev Immunol. 10:111–122. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jin D, Wu X, Yu H, Jiang L, Zhou P, Yao X,
Meng J, Wang L, Zhang M and Zhang Y: Systematic analysis of
lncRNAs, mRNAs, circRNAs and miRNAs in patients with postmenopausal
osteoporosis. Am J Transl Res. 10:1498–1510. 2018.PubMed/NCBI
|
16
|
Mandourah AY, Ranganath L, Barraclough R,
Vinjamuri S, Hof RV, Hamill S, Czanner G, Dera AA, Wang D and
Barraclough DL: Circulating microRNAs as potential diagnostic
biomarkers for osteoporosis. Sci Rep. 8:84212018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Feng Q, Zheng S and Zheng J: The emerging
role of microRNAs in bone remodeling and its therapeutic
implications for osteoporosis. Biosci Rep. 38(pii):
BSR201804532018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li H, Wang Z, Fu Q and Zhang J: Plasma
miRNA levels correlate with sensitivity to bone mineral density in
postmenopausal osteoporosis patients. Biomarkers. 19:553–556. 2014.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Katagiri T, Yamaguchi A, Komaki M, Abe E,
Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A and
Suda T: Bone morphogenetic protein-2 converts the differentiation
pathway of C2C12 myoblasts into the osteoblast lineage. J Cell
Biol. 127:1755–1766. 1994. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shin CS, Lecanda F, Sheikh S, Weitzmann L,
Cheng SL and Civitelli R: Relative abundance of different cadherins
defines differentiation of mesenchymal precursors into osteogenic,
myogenic, or adipogenic pathways. J Cell Biochem. 78:566–577. 2000.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang Y, Gao Y, Cai L, Li F, Lou Y, Xu N,
Kang Y and Yang H: MicroRNA-221 is involved in the regulation of
osteoporosis through regulates RUNX2 protein expression and
osteoblast differentiation. Am J Transl Res. 9:126–135.
2017.PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Feng Z, Liu C, Guan X and Mor V: China's
rapidly aging population creates policy challenges in shaping a
viable long-term care system. Health Aff (Millwood). 31:2764–2773.
2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Black DM and Rosen CJ: Postmenopausal
osteoporosis. N Engl J Med. 374:2096–2097. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Raisz LG: Pathogenesis of osteoporosis:
Concepts, conflicts, and prospects. J Clin Invest. 115:3318–3325.
2005. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Tella SH and Gallagher JC: Prevention and
treatment of postmenopausal osteoporosis. J Steroid Biochem Mol
Biol. 142:155–170. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lian JB, Stein GS, van Wijnen AJ, Stein
JL, Hassan MQ, Gaur T and Zhang Y: MicroRNA control of bone
formation and homeostasis. Nat Rev Endocrinol. 8:212–227. 2012.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Valenti MT, Dalle Carbonare L and Mottes
M: Role of microRNAs in progenitor cell commitment and osteogenic
differentiation in health and disease (Review). Int J Mol Med.
41:2441–2449. 2018.PubMed/NCBI
|
29
|
Chen C, Peng Y, Peng Y, Peng J and Jiang
S: miR-135a-5p inhibits 3T3-L1 adipogenesis through activation of
canonical Wnt/β-catenin signaling. J Mol Endocrinol. 52:311–320.
2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang Q, Zhang H, Shen X and Ju S: Serum
microRNA-135a-5p as an auxiliary diagnostic biomarker for
colorectal cancer. Ann Clin Biochem. 54:76–85. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yao S, Tian C, Ding Y, Ye Q, Gao Y, Yang N
and Li Q: Down-regulation of Krüppel-like factor-4 by
microRNA-135a-5p promotes proliferation and metastasis in
hepatocellular carcinoma by transforming growth factor-β1.
Oncotarget. 7:42566–42578. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhao X, Sun Z, Li H, Jiang F, Zhou J and
Zhang L: MiR-135a-5p modulates biological functions of thyroid
carcinoma cells via targeting VCAN 3′-UTR. Cancer Biomark.
20:207–216. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Guo LM, Ding GF, Xu W, Ge H, Jiang Y, Chen
XJ and Lu Y: MiR-135a-5p represses proliferation of HNSCC by
targeting HOXA10. Cancer Biol Ther. 1–28. 2018.
|
34
|
Lin J, Wen X, Zhang X, Sun X, Yunzhi L,
Peng R, Zhu M, Wang M, Zhang Y, Luo W, et al: miR-135a-5p and
miR-124-3p inhibit malignancy of glioblastoma by downregulation of
syndecan binding protein. J Biomed Nanotechnol. 14:1317–1329.
2018.
|
35
|
Liu Y, Liao S, Quan H, Lin Y, Li J and
Yang Q: Involvement of microRNA-135a-5p in the protective effects
of hydrogen sulfide against parkinson's disease. Cell Physiol
Biochem. 40:18–26. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen D, Zhao M and Mundy GR: Bone
morphogenetic proteins. Growth Factors. 22:233–241. 2004.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Kim JY, Cheon YH, Kwak SC, Baek JM, Yoon
KH, Lee MS and Oh J: Emodin regulates bone remodeling by inhibiting
osteoclastogenesis and stimulating osteoblast formation. J Bone
Miner Res. 29:1541–1553. 2014. View Article : Google Scholar : PubMed/NCBI
|