1
|
Stanekzai J, Isenovic ER and Mousa SA:
Treatment options for diabetes: Potential role of stem cells.
Diabetes Res Clin Pract. 98:361–368. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bose B, Shenoy SP, Konda S and Wangikar P:
Human embryonic stem cell differentiation into insulin secreting
β-cells for diabetes. Cell Biol Int. 36:1013–1020. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T
and Petersen BE: Teratoma formation leads to failure of treatment
for type I diabetes using embryonic stem cell-derived
insulin-producing cells. Am J Pathol. 166:1781–1791. 2005.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang H, Yang Y, Ho G, Lin X, Wu W, Li W,
Lin L, Feng X, Huo X, Jiang J, et al: Programming of human
umbilical cord mesenchymal stem cells in vitro to promote
pancreatic gene expression. Mol Med Rep. 8:769–774. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Friedman R, Betancur M, Boissel L, Tuncer
H, Cetrulo C and Klingemann H: Umbilical cord mesenchymal stem
cells: Adjuvants for human cell transplantation. Biol Blood Marrow
Transplant. 13:1477–1486. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sakamoto T, Ono H and Saito Y: Electron
microscopic histochemical studies on the localization of hyaluronic
acid in Wharton's jelly of the human umbilical cord. Nihon Sanka
Fujinka Gakkai Zasshi. 48:501–507. 1996.(In Japanese). PubMed/NCBI
|
7
|
Tsagias N, Koliakos I, Karagiannis V,
Eleftheriadou M and Koliakos GG: Isolation of mesenchymal stem
cells using the total length of umbilical cord for transplantation
purposes. Transfus Med. 21:253–261. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Romanov YA, Svintsitskaya VA and Smirnov
VN: Searching for alternative sources of postnatal human
mesenchymal stem cells: Candidate MSC-like cells from umbilical
cord. Stem Cells. 21:105–110. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kadivar M, Khatami S, Mortazavi Y,
Shokrgozar MA, Taghikhani M and Soleimani M: In vitro
cardiomyogenic potential of human umbilical vein-derived
mesenchymal stem cells. Biochem Biophys Res Commun. 340:639–647.
2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ma L, Feng XY, Cui BL, Law F, Jiang XW,
Yang LY, Xie QD and Huang TH: Human umbilical cord Wharton's
Jelly-derived mesenchymal stem cells differentiation into
nerve-like cells. Chin Med J (Engl). 118:1987–1993. 2005.PubMed/NCBI
|
11
|
Bao CS, Li XL, Liu L, Wang B, Yang FB and
Chen LG: Transplantation of Human umbilical cord mesenchymal stem
cells promotes functional recovery after spinal cord injury by
blocking the expression of IL-7. Eur Rev Med Pharmacol Sci.
22:6436–6447. 2018.PubMed/NCBI
|
12
|
Zhao Z, Chen Z, Zhao X, Pan F, Cai M, Wang
T, Zhang H, Lu JR and Lei M: Sphingosine-1-phosphate promotes the
differentiation of human umbilical cord mesenchymal stem cells into
cardiomyocytes under the designated culturing conditions. J Biomed
Sci. 18:372011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Huang P, Lin LM, Wu XY, Tang QL, Feng XY,
Lin GY, Lin X, Wang HW, Huang TH and Ma L: Differentiation of human
umbilical cord Wharton's jelly-derived mesenchymal stem cells into
germ-like cells in vitro. J Cell Biochem. 109:747–754.
2010.PubMed/NCBI
|
14
|
Zhou Q and Melton DA: Extreme makeover:
Converting one cell into another. Cell Stem Cell. 3:382–388. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Cavelti-Weder C, Zumsteg A, Li W and Zhou
Q: Reprogramming of pancreatic Acinar cells to functional beta
cells by in vivo transduction of a polycistronic construct
containing Pdx1, Ngn3, MafA in mice. Curr Protoc Stem Cell Biol.
40:A.10.1–4A.10.12. 2017.
|
16
|
Yamada T, Cavelti-Weder C, Caballero F,
Lysy PA, Guo L, Sharma A, Li W, Zhou Q, Bonner-Weir S and Weir GC:
Reprogramming mouse cells with a pancreatic duct phenotype to
insulin-producing β-like cells. Endocrinology. 156:2029–2038. 2015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Akinci E, Banga A, Tungatt K, Segal J,
Eberhard D, Dutton JR and Slack JM: Reprogramming of various cell
types to a beta-like state by Pdx1, Ngn3 and MafA. PLoS One.
8:e824242013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sosa-Pineda B, Chowdhury K, Torres M,
Oliver G and Gruss P: The Pax4 gene is essential for
differentiation of insulin-producing beta cells in the mammalian
pancreas. Nature. 386:399–402. 1997. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Druelle N, Vieira A, Shabro A, Courtney M,
Mondin M, Rekima S, Napolitano T, Silvano S, Navarro-Sanz S, Hadzic
B, et al: Ectopic expression of Pax4 in pancreatic delta cells
results in beta-like cell neogenesis. J Cell Biol. 216:4299–4311.
2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang Y, Fava GE, Wang H, Mauvais-Jarvis
F, Fonseca VA and Wu H: PAX4 gene transfer induces α-to-β cell
phenotypic conversion and confers therapeutic benefits for diabetes
treatment. Mol Ther. 24:251–260. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C (T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Hald J, Sprinkel AE, Ray M, Serup P,
Wright C and Madsen OD: Generation and characterization of Ptf1a
antiserum and localization of Ptf1a in relation to Nkx6.1 and Pdx1
during the earliest stages of mouse pancreas development. J
Histochem Cytochem. 56:587–595. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ding L, Han L, Li Y, Zhao J, He P and
Zhang W: Neurogenin 3-directed cre deletion of Tsc1 gene causes
pancreatic acinar carcinoma. Neoplasia. 16:909–917. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Babu DA, Chakrabarti SK, Garmey JC and
Mirmira RG: Pdx1 and BETA2/NeuroD1 participate in a transcriptional
complex that mediates short-range DNA looping at the insulin gene.
J Biol Chem. 283:8164–8172. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang J, Elghazi L, Parker SE, Kizilocak H,
Asano M, Sussel L and Sosa-Pineda B: The concerted activities of
Pax4 and Nkx2.2 are essential to initiate pancreatic beta-cell
differentiation. Dev Biol. 266:178–189. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ahlgren U, Jonsson J and Edlund H: The
morphogenesis of the pancreatic mesenchyme is uncoupled from that
of the pancreatic epithelium in IPF1/PDX1-deficient mice.
Development. 122:1409–1416. 1996.PubMed/NCBI
|
27
|
Guz Y, Montminy MR, Stein R, Leonard J,
Gamer LW, Wright CV and Teitelman G: Expression of murine STF-1, a
putative insulin gene transcription factor, in beta cells of
pancreas, duodenal epithelium and pancreatic exocrine and endocrine
progenitors during ontogeny. Development. 121:11–18.
1995.PubMed/NCBI
|
28
|
Gradwohl G, Dierich A, LeMeur M and
Guillemot F: neurogenin3 is required for the development of the
four endocrine cell lineages of the pancreas. Proc Natl Acad Sci
USA. 97:1607–1611. 2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kataoka K, Han SI, Shioda S, Hirai M,
Nishizawa M and Handa H: MafA is a glucose-regulated and pancreatic
beta-cell-specific transcriptional activator for the insulin gene.
J Biol Chem. 277:49903–49910. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sheets TP, Park KE, Park CH, Swift SM,
Powell A, Donovan DM and Telugu BP: Targeted mutation of NGN3 gene
disrupts pancreatic endocrine cell development in pigs. Sci Rep.
8:35822018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Napolitano T, Avolio F, Courtney M, Vieira
A, Druelle N, Ben-Othman N, Hadzic B, Navarro S and Collombat P:
Pax4 acts as a key player in pancreas development and plasticity.
Semin Cell Dev Biol. 44:107–114. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lima MJ, Muir KR, Docherty HM, McGowan NW,
Forbes S, Heremans Y, Heimberg H, Casey J and Docherty K:
Generation of functional beta-like cells from human exocrine
pancreas. PLoS One. 11:e1562042016. View Article : Google Scholar
|
33
|
Collombat P, Hecksher-Sorensen J, Broccoli
V, Krull J, Ponte I, Mundiger T, Smith J, Gruss P, Serup P and
Mansouri A: The simultaneous loss of Arx and Pax4 genes promotes a
somatostatin-producing cell fate specification at the expense of
the alpha- and beta-cell lineages in the mouse endocrine pancreas.
Development. 132:2969–2980. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ray JD, Kener KB, Bitner BF, Wright BJ,
Ballard MS, Barrett EJ, Hill JT, Moss LG and Tessem JS:
Nkx6.1-mediated insulin secretion and β-cell proliferation is
dependent on upregulation of c-Fos. FEBS Lett. 590:1791–1803. 2016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Fueger PT, Schisler JC, Lu D, Babu DA,
Mirmira RG, Newgard CB and Hohmeier HE: Trefoil factor 3 stimulates
human and rodent pancreatic islet beta-cell replication with
retention of function. Mol Endocrinol. 22:1251–1259. 2008.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Guillam MT, Dupraz P and Thorens B:
Glucose uptake, utilization and signaling in GLUT2-null islets.
Diabetes. 49:1485–1491. 2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Johnson JH, Ogawa A, Chen L, Orci L,
Newgard CB, Alam T and Unger RH: Underexpression of beta cell high
Km glucose transporters in noninsulin-dependent diabetes. Science.
250:546–549. 1990. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lu B, Kurmi K, Munoz-Gomez M, Jacobus
Ambuludi EJ, Tonne JM, Rakshit K, Hitosugi T, Kudva YC, Matveyenko
AV and Ikeda Y: Impaired β-cell glucokinase as an underlying
mechanism in diet-induced diabetes. Dis Model Mech. 11(pii):
dmm0333162018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Vivoli M, Caulfield TR, Martinez-Mayorga
K, Johnson AT, Jiao GS and Lindberg I: Inhibition of prohormone
convertases PC1/3 and PC2 by 2,5-dideoxystreptamine derivatives.
Mol Pharmacol. 81:440–454. 2012. View Article : Google Scholar : PubMed/NCBI
|