Recent progress regarding kaempferol for the treatment of various diseases (Review)
- Authors:
- Jie Ren
- Yifei Lu
- Yanhong Qian
- Bozhou Chen
- Tao Wu
- Guang Ji
-
Affiliations: Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China, Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China - Published online on: August 13, 2019 https://doi.org/10.3892/etm.2019.7886
- Pages: 2759-2776
-
Copyright: © Ren et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Devi KP, Malar DS, Nabavi SF, Sureda A, Xiao J, Nabavi SM and Daglia M: Kaempferol and inflammation: From chemistry to medicine. Pharmacol Res. 99:1–10. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tsao R: Chemistry and biochemistry of dietary polyphenols. Nutrients. 2:1231–1246. 2010. View Article : Google Scholar : PubMed/NCBI | |
Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C and López-Lázaro M: A review on the dietary flavonoid kaempferol. Mini Rev Med Chem. 11:298–344. 2011. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Rho HS, Kim DH and Chang IS: Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem. 54:2951–2956. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen AY and Chen YC: A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 138:2099–2107. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yadav KS and Sawant KK: Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles. AAPS PharmSciTech. 11:1456–1465. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hegde A and Bhatia M: Hydrogen sulfide in inflammation: Friend or foe? Inflamm Allergy Drug Targets. 10:118–122. 2011. View Article : Google Scholar : PubMed/NCBI | |
Folkerts G, Kloek J, Muijsers RB and Nijkamp FP: Reactive nitrogen and oxygen species in airway inflammation. Eur J Pharmacol. 429:251–262. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lin MK, Yu YL, Chen KC, Chang WT, Lee MS, Yang MJ, Cheng HC, Liu CH, Chen DzC and Chu CL: Kaempferol from Semen cuscutae attenuates the immune function of dendritic cells. Immunobiology. 216:1103–1109. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nosikova YS, Santerre JP, Grynpas M, Gibson G and Kandel RA: Characterization of the annulus fibrosus-vertebral body interface: Identification of new structural features. J Anat. 221:577–589. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Tang H, Zhang Z, Zhang Y, Qiu C, Zhang L, Huang P and Li F: Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs. Int Immunopharmacol. 43:236–242. 2017. View Article : Google Scholar : PubMed/NCBI | |
Silverwood V, Blagojevic-Bucknall M, Jinks C, Jordan JL, Protheroe J and Jordan KP: Current evidence on risk factors for knee osteoarthritis in older adults: A systematic review and meta-analysis. Osteoarthritis Cartilage. 23:507–515. 2015. View Article : Google Scholar : PubMed/NCBI | |
Asanbaeva A, Tam J, Schumacher BL, Klisch SM, Masuda K and Sah RL: Articular cartilage tensile integrity: Modulation by matrix depletion is maturation-dependent. Arch Biochem Biophys. 474:175–182. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lawrence RC, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, Liang MH, Kremers HM, Mayes MD, Merkel PA, et al: Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58:15–25. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu-Bryan R and Terkeltaub R: Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol. 11:35–44. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abramson SB: Osteoarthritis and nitric oxide. Osteoarthritis Cartilage. 16 (Suppl 2):S15–S20. 2008. View Article : Google Scholar : PubMed/NCBI | |
Honghai Z, Zhang T, Xia C, Shi L, Wang S, Zheng X, Hu T and Zhang B: Berberine ameliorates cartilage degeneration in interleukin-1β-stimulated rat chondrocytes and in a rat model of osteoarthritis via Akt signalling. J Cell Mol Med. 18:283–292. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park MY, Ji GE and Sung MK: Dietary kaempferol suppresses inflammation of dextran sulfate sodium-induced colitis in mice. Dig Dis Sci. 57:355–363. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sordillo LM and Streicher KL: Mammary gland immunity and mastitis susceptibility. J Mammary Gland Biol Neoplasia. 7:135–146. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xiao HB, Sui GG, Lu XY and Sun ZL: Kaempferol modulates Angiopoietin-like protein 2 expression to lessen the mastitis in mice. Pharmacol Rep. 70:439–445. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alam J, Jantan I and Bukhari SNA: Rheumatoid arthritis: Recent advances on its etiology, role of cytokines and pharmacotherapy. Biomed Pharmacother. 92:615–633. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pan D, Li N, Liu Y, Xu Q, Liu Q, You Y, Wei Z, Jiang Y, Liu M, Guo T, et al: Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway. Int Immunopharmacol. 55:174–182. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee CJ, Moon SJ, Jeong JH, Lee S, Lee MH, Yoo SM, Lee HS, Kang HC, Lee JY, Lee WS, et al: Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell Death Dis. 9:4012018. View Article : Google Scholar : PubMed/NCBI | |
Gill SE, Rohan M and Mehta S: Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis-induced lung injury in vivo. Respir Res. 16:1092015. View Article : Google Scholar : PubMed/NCBI | |
Villar J, Blanco J, Añón JM, Santos-Bouza A, Blanch L, Ambrós A, Gandía F, Carriedo D, Mosteiro F, Basaldúa S, et al: The ALIEN study: Incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med. 37:1932–1941. 2011. View Article : Google Scholar : PubMed/NCBI | |
Matthay MA and Zimmerman GA: Acute lung injury and the acute respiratory distress syndrome: Four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol. 33:319–327. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Ai X, Duan Y, Xue M, He W, Wang C, Xu T, Xu M, Liu B, Li C, et al: Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways. Biomed. Pharmacother. 89:660–672. 2017. View Article : Google Scholar | |
Rabha DJ, Singh TU, Rungsung S, Kumar T, Parida S, Lingaraju MC, Paul A, Sahoo M and Kumar D: Kaempferol attenuates acute lung injury in caecal ligation and puncture model of sepsis in mice. Exp Lung Res. 44:63–78. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Yang X, Liu T, Guan M, Feng X, Dong W, Chu X, Liu J, Tian X, Ci X, et al: Kaempferol regulates MAPKs and NF-κB signaling pathways to attenuate LPS-induced acute lung injury in mice. Int Immunopharmacol. 14:209–216. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gong JH, Shin D, Han SY, Kim JL and Kang YH: Kaempferol suppresses eosionphil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma. J Nutr. 142:47–56. 2012. View Article : Google Scholar : PubMed/NCBI | |
Banerjee R and Puniyani RR: Exogenous surfactant therapy and mucus rheology in chronic obstructive airway diseases. J Biomater Appl. 14:243–272. 2000. View Article : Google Scholar : PubMed/NCBI | |
Davies DE: The role of the epithelium in airway remodeling in asthma. Proc Am Thorac Soc. 6:678–682. 2009. View Article : Google Scholar : PubMed/NCBI | |
Erjefält JS: The airway epithelium as regulator of inflammation patterns in asthma. Clin Respir J. 4 (Suppl 1):S9–S14. 2010. View Article : Google Scholar | |
Kim SR and Lee YC: Endoplasmic reticulum stress and the related signaling networks in severe asthma. Allergy Asthma Immunol Res. 7:106–117. 2015. View Article : Google Scholar : PubMed/NCBI | |
Makhija L, Krishnan V, Rehman R, Chakraborty S, Maity S, Mabalirajan U, Chakraborty K, Ghosh B and Agrawal A: Chemical chaperones mitigate experimental asthma by attenuating endoplasmic reticulum stress. Am J Respir Cell Mol Biol. 50:923–931. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park SH, Gong JH, Choi YJ, Kang MK, Kim YH and Kang YH: Kaempferol inhibits endoplasmic reticulum stress-associated mucus hypersecretion in airway epithelial cells and ovalbumin-sensitized mice. PLoS One. 10:e01435262015. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Basave HN, Morales-Vásquez F, Ruiz-Molina JM, Namendys-Silva SA, Vela-Sarmiento I, Ruan JM, Rosciano AE, Calderillo-Ruiz G, Díaz-Romero C, Herrera-Gómez A and Meneses-García AA: Gastric cancer in young people under 30 years of age: Worse prognosis, or delay in diagnosis? Cancer Manag Res. 5:31–36. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li WF, Hao DJ, Fan T, Huang HM, Yao H and Niu XF: Protective effect of chelerythrine against ethanol-induced gastric ulcer in mice. Chem Biol Interact. 208:18–27. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bae S, Kim N, Kang JM, Kim DS, Kim KM, Cho YK, Kim JH, Jung SW and Shim KN: Incidence and 30-day mortality of peptic ulcer bleeding in Korea. Eur J Gastroenterol Hepatol. 24:675–682. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ribeiro AR, Diniz PB, Pinheiro MS, Albuquerque-Júnior RL and Thomazzi SM: Gastroprotective effects of thymol on acute and chronic ulcers in rats: The role of prostaglandins, ATP-sensitive K(+) channels, and gastric mucus secretion. Chem Biol Interact. 244:121–128. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ateufack G, Domgnim Mokam EC, Mbiantcha M, Dongmo Feudjio RB, David N and Kamanyi A: Gastroprotective and ulcer healing effects of Piptadeniastrum Africanum on experimentally induced gastric ulcers in rats. BMC Complement Altern Med. 15:2142015. View Article : Google Scholar : PubMed/NCBI | |
Almasaudi SB, Abbas AT, Al-Hindi RR, El-Shitany NA, Abdel-Dayem UA, Ali SS, Saleh RM, Al Jaouni SK, Kamal MA and Harakeh SM: Manuka honey exerts antioxidant and anti-inflammatory activities that promote healing of acetic acid-induced gastric ulcer in rats. Evid Based Complement Alternat Med. 2017:54139172017. View Article : Google Scholar : PubMed/NCBI | |
Niv Y and Banić M: Gastric barrier function and toxic damage. Dig Dis. 32:235–242. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hajrezaie M, Golbabapour S, Hassandarvish P, Gwaram NS, A Hadi AH, Mohd Ali H, Majid N and Abdulla MA: Acute toxicity and gastroprotection studies of a new schiff base derived copper (II) complex against ethanol-induced acute gastric lesions in rats. PLoS One. 7:e515372012. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Hu X, Xuan Y, Ying J, Fei Y, Rong J, Zhang Y, Zhang J, Liu C and Liu Z: Kaempferol protects ethanol-induced gastric ulcers in mice via pro-inflammatory cytokines and NO. Acta Biochim Biophys Sin (Shanghai). 50:246–253. 2018. View Article : Google Scholar : PubMed/NCBI | |
Arif H, Sohail A, Farhan M, Rehman AA, Ahmad A and Hadi SM: Flavonoids-induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention. Int J Biol Macromol. 106:569–578. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bandla S, Pennathur A, Luketich JD, Beer DG, Lin L, Bass AJ, Godfrey TE and Litle VR: Comparative genomics of esophageal adenocarcinoma and squamous cell carcinoma. Ann Thorac Surg. 93:1101–1106. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pohl H and Welch HG: The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst. 97:142–146. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yao S, Wang X, Li C, Zhao T, Jin H and Fang W: Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway. Tumour Biol. 37:10247–10256. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Zhao XH and Wang ZJ: Flavones and flavonols exert cytotoxic effects on a human oesophageal adenocarcinoma cell line (OE33) by causing G2/M arrest and inducing apoptosis. Food Chem Toxicol. 46:2042–2053. 2008. View Article : Google Scholar : PubMed/NCBI | |
Diantini A, Subarnas A, Lestari K, Halimah E, Susilawati Y, Supriyatna, Julaeha E, Achmad TH, Suradji EW, Yamazaki C, et al: Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncol Lett. 3:1069–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Hwang KA and Choi KC: Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J Nutr Biochem. 28:70–82. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ren W, Qiao Z, Wang H, Zhu L and Zhang L: Flavonoids: Promising anticancer agents. Med Res Rev. 23:519–534. 2003. View Article : Google Scholar : PubMed/NCBI | |
Konopleva M, Zhao S, Xie Z, Segall H, Younes A, Claxton DF, Estrov Z, Kornblau SM and Andreeff M: Apoptosis. Molecules and mechanisms. Adv Exp Med Biol. 457:217–236. 1999. View Article : Google Scholar : PubMed/NCBI | |
Li S, Yan T, Deng R, Jiang X, Xiong H, Wang Y, Yu Q, Wang X, Chen C and Zhu Y: Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1. Onco Targets Ther. 10:4809–4819. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yi X, Zuo J, Tan C, Xian S, Luo C, Chen S, Yu L and Luo Y: Kaempferol, a flavonoid compound from induced apoptosis and growth inhibition in MCF-7 breast cancer cell. Afr J Tradit Complement Altern Med. 13:210–215. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu L and Xue L: Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells. Oncol Res. 27:629–634. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kashafi E, Moradzadeh M, Mohamadkhani A and Erfanian S: Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed Pharmacother. 89:573–577. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Ren F, Zhang L, Zhang X, Yang R, Xie B, Li Z, Hu Z, Duan Z and Zhang J: Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway. Mol Med Rep. 13:2791–2800. 2016. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 29:625–634. 2010. View Article : Google Scholar : PubMed/NCBI | |
Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, Factor VM and Thorgeirsson SS: Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology. 130:1117–1128. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bruix J and Llovet JM: Major achievements in hepatocellular carcinoma. Lancet. 373:614–616. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mylonis I, Lakka A, Tsakalof A and Simos G: The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions. Biochem Biophys Res Commun. 398:74–78. 2010. View Article : Google Scholar : PubMed/NCBI | |
Seydi E, Salimi A, Rasekh HR, Mohsenifar Z and Pourahmad J: Selective cytotoxicity of luteolin and kaempferol on cancerous hepatocytes obtained from rat model of hepatocellular carcinoma: Involvement of ROS-mediated mitochondrial targeting. Nutr Cancer. 70:594–604. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Rankin GO, Li Z, Depriest L and Chen YC: Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem. 128:513–519. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mellier G, Huang S, Shenoy K and Pervaiz S: TRAILing death in cancer. Mol Aspects Med. 31:93–112. 2010. View Article : Google Scholar : PubMed/NCBI | |
Inoue T, Shiraki K, Fuke H, Yamanaka Y, Miyashita K, Yamaguchi Y, Yamamoto N, Ito K, Sugimoto K and Nakano T: Proteasome inhibition sensitizes hepatocellular carcinoma cells to TRAIL by suppressing caspase inhibitors and AKT pathway. Anticancer Drugs. 17:261–268. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Tian B, Wang Y and Ding H: Kaempferol sensitizes human ovarian cancer cells-OVCAR-3 and SKOV-3 to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis via JNK/ERK-CHOP pathway and Up-regulation of death receptors 4 and 5. Med Sci Monit. 23:5096–5105. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bartek J and Lukas J: Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 3:421–429. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Yin J, Rankin GO and Chen YC: Kaempferol induces G2/M cell cycle arrest via checkpoint Kinase 2 and promotes apoptosis via death receptors in human ovarian carcinoma A2780/CP70 cells. Molecules. 23(pii): E10952018. View Article : Google Scholar : PubMed/NCBI | |
Hundahl SA, Menck HR, Mansour EG and Winchester DP: The national cancer data base report on gastric carcinoma. Cancer. 80:2333–2341. 1997. View Article : Google Scholar : PubMed/NCBI | |
Alberts SR, Cervantes A and van de Velde CJ: Gastric cancer: Epidemiology, pathology and treatment. Ann Oncol. 14 (Suppl 2):ii31–ii36. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ajani JA: Evolving chemotherapy for advanced gastric cancer. Oncologist. 10 (Suppl 3):S49–S58. 2005. View Article : Google Scholar | |
Roberts AB and Wakefield LM: The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA. 100:8621–8623. 2003. View Article : Google Scholar : PubMed/NCBI | |
DiMagno EP, Reber HA and Tempero MA: AGA technical review on the epidemiology, diagnosis, and treatment of pancreatic ductal adenocarcinoma. American Gastroenterological Association. Gastroenterology. 117:1464–1484. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jo E, Park SJ, Choi YS, Jeon WK and Kim BC: Kaempferol suppresses transforming growth factor-β1-induced Epithelial-to-Mesenchymal transition and migration of A549 lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at threonine-179. Neoplasia. 17:525–537. 2015. View Article : Google Scholar : PubMed/NCBI | |
McCoyd M, Gruener G and Foy P: Neurologic aspects of lymphoma and leukemias. Handb Clin Neurol. 120:1027–1043. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu LY, Lu HF, Chou YC, Shih YL, Bau DT, Chen JC, Hsu SC and Chung JG: Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells. Am J Chin Med. 43:365–382. 2015. View Article : Google Scholar : PubMed/NCBI | |
Adams J and Nassiri M: Acute Promyelocytic leukemia: A review and discussion of variant translocations. Arch Pathol Lab Med. 139:1308–1313. 2015. View Article : Google Scholar : PubMed/NCBI | |
Moradzadeh M, Tabarraei A, Sadeghnia HR, Ghorbani A, Mohamadkhani A, Erfanian S and Sahebkar A: Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes. J Cell Biochem. 119:2288–2297. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song W, Dang Q, Xu D, Chen Y, Zhu G, Wu K, Zeng J, Long Q, Wang X, He D and Li L: Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling. Oncol Rep. 31:1350–1356. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Cui W, Yang X and Tong B: Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai). 48:238–245. 2016. View Article : Google Scholar : PubMed/NCBI | |
Neoptolemos JP, Dunn JA, Stocken DD, Almond J, Link K, Beger H, Bassi C, Falconi M, Pederzoli P, Dervenis C, et al: Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: A randomised controlled trial. Lancet. 358:1576–1585. 2001. View Article : Google Scholar : PubMed/NCBI | |
Brandes F, Schmidt K, Wagner C, Redekopf J, Schlitt HJ, Geissler EK and Lang SA: Targeting cMET with INC280 impairs tumour growth and improves efficacy of gemcitabine in a pancreatic cancer model. BMC Cancer. 15:712015. View Article : Google Scholar : PubMed/NCBI | |
Di Renzo MF, Poulsom R, Olivero M, Comoglio PM and Lemoine NR: Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res. 55:1129–1138. 1995.PubMed/NCBI | |
Lee J and Kim JH: Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS One. 11:e01552642016. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Wu L, Xiao H, Li N, Wang H, Cheng C, Bai R, Zhao Y and Zheng H: Use of myocardin in the classification of mesenchymal tumors of the uterus. Int J Gynecol Pathol. 29:55–62. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Ding Z and Wu C: Mechanistic study of the inhibitory effect of kaempferol on uterine fibroids in vitro. Med Sci Monit. 22:4803–4808. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qiu W, Lin J, Zhu Y, Zhang J, Zeng L, Su M and Tian Y: Kaempferol modulates DNA methylation and downregulates DNMT3B in bladder cancer. Cell Physiol Biochem. 41:1325–1335. 2017. View Article : Google Scholar : PubMed/NCBI | |
Azad N, Zahnow CA, Rudin CM and Baylin SB: The future of epigenetic therapy in solid tumours-lessons from the past. Nat Rev Clin Oncol. 10:256–266. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maio M, Covre A, Fratta E, Di Giacomo AM, Taverna P, Natali PG, Coral S and Sigalotti L: Molecular pathways: At the crossroads of cancer epigenetics and immunotherapy. Clin Cancer Res. 21:4040–4047. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee SJ, Park SS, Kim WJ and Moon SK: Gleditsia sinensis thorn extract inhibits proliferation and TNF-α-induced MMP-9 expression in vascular smooth muscle cells. Am J Chin Med. 40:373–386. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kansara M and Thomas DM: Molecular pathogenesis of osteosarcoma. DNA Cell Biol. 26:1–18. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ottaviani G and Jaffe N: The epidemiology of osteosarcoma. Cancer Treat Res. 152:3–13. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang WW, Chiu YJ, Fan MJ, Lu HF, Yeh HF, Li KH, Chen PY, Chung JG and Yang JS: Kaempferol induced apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathway in human osteosarcoma U-2 OS cells. Mol Nutr Food Res. 54:1585–1595. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen HJ, Lin CM, Lee CY, Shih NC, Peng SF, Tsuzuki M, Amagaya S, Huang WW and Yang JS: Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncol Rep. 30:925–932. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alter MJ: Epidemiology of viral hepatitis and HIV co-infection. J Hepatol. 44 (1 Suppl):S6–S9. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee SS, Buters JT, Pineau T, Fernandez-Salguero P and Gonzalez FJ: Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem. 271:12063–12067. 1996. View Article : Google Scholar : PubMed/NCBI | |
Nicod L, Viollon C, Regnier A, Jacqueson A and Richert L: Rifampicin and isoniazid increase acetaminophen and isoniazid cytotoxicity in human HepG2 hepatoma cells. Hum Exp Toxicol. 16:28–34. 1997. View Article : Google Scholar : PubMed/NCBI | |
Shih TY, Young TH, Lee HS, Hsieh CB and Hu OY: Protective effects of kaempferol on isoniazid- and rifampicin-induced hepatotoxicity. AAPS J. 15:753–762. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rudnicki M, Silveira MM, Pereira TV, Oliveira MR, Reginatto FH, Dal-Pizzol F and Moreira JC: Protective effects of Passiflora alata extract pretreatment on carbon tetrachloride induced oxidative damage in rats. Food Chem Toxicol. 45:656–661. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sun F, Hamagawa E, Tsutsui C, Ono Y, Ogiri Y and Kojo S: Evaluation of oxidative stress during apoptosis and necrosis caused by carbon tetrachloride in rat liver. Biochim Biophys Acta. 1535:186–191. 2001. View Article : Google Scholar : PubMed/NCBI | |
Szymonik-Lesiuk S, Czechowska G, Stryjecka-Zimmer M, Słomka M, Madro A, Celiński K and Wielosz M: Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication. J Hepatobiliary Pancreat Surg. 10:309–315. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Tang C and Zhang H: Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice. J Food Drug Anal. 23:310–317. 2015. View Article : Google Scholar : PubMed/NCBI | |
O'Shea RS, Dasarathy S and McCullough AJ; Practice Guideline Committee of the American Association for the Study of Liver Diseases; Practice Parameters Committee of the American College of Gastroenterology, : Alcoholic liver disease. Hepatology. 51:307–328. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Sun J, Jiang Z, Xie W and Zhang X: Hepatoprotective effect of kaempferol against alcoholic liver injury in mice. Am J Chin Med. 43:241–254. 2015. View Article : Google Scholar : PubMed/NCBI | |
French SW: The importance of CYP2E1 in the pathogenesis of alcoholic liver disease and drug toxicity and the role of the proteasome. Subcell Biochem. 67:145–164. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Jiang Z, Li X and Zhang X: Kaempferol's protective effect on ethanol-induced mouse primary hepatocytes injury involved in the synchronous inhibition of SP1, Hsp70 and CYP2E1. Am J Chin Med. 46:1093–1110. 2018. View Article : Google Scholar : PubMed/NCBI | |
McCarthy MI: Genomics, type 2 diabetes, and obesity. N Engl J Med. 363:2339–2350. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tilg H and Moschen AR: Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 6:772–873. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee B, Kwon M, Choi JS, Jeong HO, Chung HY and Kim HR: Kaempferol isolated from nelumbo nucifera inhibits lipid accumulation and increases fatty acid oxidation signaling in adipocytes. J Med Food. 18:1363–1370. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chang CJ, Tzeng TF, Liou SS, Chang YS and Liu IM: Kaempferol regulates the lipid-profile in high-fat diet-fed rats through an increase in hepatic PPARα levels. Planta Med. 77:1876–1882. 2011. View Article : Google Scholar : PubMed/NCBI | |
Luo C, Yang H, Tang C, Yao G, Kong L, He H and Zhou Y: Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats. Int Immunopharmacol. 28:744–750. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Qian J, Wang L, Li J, Zhao Y, Han J, Khan Z, Chen X, Wang J and Liang G: Kaempferol attenuates hyperglycemia-induced cardiac injuries by inhibiting inflammatory responses and oxidative stress. Endocrine. 60:83–94. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Liu D: Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol. 670:325–332. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kass DA: Getting better without AGE: New insights into the diabetic heart. Circ Res. 92:704–706. 2003. View Article : Google Scholar : PubMed/NCBI | |
Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, Ojha S and Arya DS: Molecular pathways involved in the amelioration of myocardial injury in diabetic rats by kaempferol. Int J Mol Sci. 18(pii): E10012017. View Article : Google Scholar : PubMed/NCBI | |
Alkhalidy H, Moore W, Wang A, Luo J, McMillan RP, Wang Y, Zhen W, Hulver MW and Liu D: Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. J Nutr Biochem. 58:90–101. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kishore L, Kaur N and Singh R: Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy. Inflammopharmacology. 26:993–1003. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chawla A, Repa JJ, Evans RM and Mangelsdorf DJ: Nuclear receptors and lipid physiology: Opening the X-files. Science. 294:1866–1870. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hoang MH, Jia Y, Mok B, Jun HJ, Hwang KY and Lee SJ: Kaempferol ameliorates symptoms of metabolic syndrome by regulating activities of liver X receptor-β. J Nutr Biochem. 26:868–875. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fisher M: Injuries to the vascular endothelium: Vascular wall and endothelial dysfunction. Rev Neurol Dis. 5 (Suppl 1):S4–S11. 2008.PubMed/NCBI | |
Kim TH, Ku SK and Bae JS: Inhibitory effects of kaempferol-3-O-sophoroside on HMGB1-mediated proinflammatory responses. Food Chem Toxicol. 50:1118–1123. 2012. View Article : Google Scholar : PubMed/NCBI | |
ten Dijke P and Arthur HM: Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol. 8:857–869. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, Lal A, Lieberman J, Lagna G and Hata A: Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J. 29:559–573. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim K, Kim S, Moh SH and Kang H: Kaempferol inhibits vascular smooth muscle cell migration by modulating BMP-mediated miR-21 expression. Mol Cell Biochem. 407:143–149. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ochiai A, Miyata S, Iwase M, Shimizu M, Inoue J and Sato R: Kaempferol stimulates gene expression of low-density lipoprotein receptor through activation of Sp1 in cultured hepatocytes. Sci Rep. 6:249402016. View Article : Google Scholar : PubMed/NCBI | |
Tabas I, García-Cardeña G and Owens GK: Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 209:13–22. 2015. View Article : Google Scholar : PubMed/NCBI | |
Singh M, Ananthula S, Milhorn DM, Krishnaswamy G and Singh K: Osteopontin: A novel inflammatory mediator of cardiovascular disease. Front Biosci. 12:214–221. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xiao HB, Lu XY, Sun ZL and Zhang HB: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice. Toxicol Appl Pharmacol. 257:405–411. 2011. View Article : Google Scholar : PubMed/NCBI | |
Keys A, Taylor HL, Blackburn H, Brozek J, Anderson JT and Simonson E: Mortality and coronary heart disease among men studied for 23 years. Arch Intern Med. 128:201–214. 1971. View Article : Google Scholar : PubMed/NCBI | |
Che J, Liang B, Zhang Y, Wang Y, Tang J and Shi G: Kaempferol alleviates ox-LDL-induced apoptosis by up-regulation of autophagy via inhibiting PI3K/Akt/mTOR pathway in human endothelial cells. Cardiovasc Pathol. 31:57–62. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weisel JW, Stauffacher CV, Bullitt E and Cohen C: A model for fibrinogen: Domains and sequence. Science. 230:1388–1391. 1985. View Article : Google Scholar : PubMed/NCBI | |
Choi JH, Park SE, Kim SJ and Kim S: Kaempferol inhibits thrombosis and platelet activation. Biochimie. 115:177–186. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mackman N: Triggers, targets and treatments for thrombosis. Nature. 451:914–918. 2008. View Article : Google Scholar : PubMed/NCBI | |
Begonja AJ, Gambaryan S, Geiger J, Aktas B, Pozgajova M, Nieswandt B and Walter U: Platelet NAD(P)H-oxidase-generated ROS production regulates alphaIIbbeta3-integrin activation independent of the NO/cGMP pathway. Blood. 106:2757–2760. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang SB, Jang JY, Chae YH, Min JH, Baek JY, Kim M, Park Y, Hwang GS, Ryu JS and Chang TS: Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation. Free Radic Biol Med. 83:41–53. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hampton BM, Schwartz SG, Brantley MA Jr and Flynn HW Jr: Update on genetics and diabetic retinopathy. Clin Ophthalmol. 9:2175–2193. 2015.PubMed/NCBI | |
Behl T and Kotwani A: Exploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathy. Pharmacol Res. 99:137–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O'Neal DN and Januszewski AS: Biomarkers in diabetic retinopathy. Rev Diabet Stud. 12:159–195. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li JK, Wei F, Jin XH, Dai YM, Cui HS and Li YM: Changes in vitreous VEGF, bFGF and fibrosis in proliferative diabetic retinopathy after intravitreal bevacizumab. Int J Ophthalmol. 8:1202–1206. 2015.PubMed/NCBI | |
Sorenson CM, Wang S, Gendron R, Paradis H and Sheibani N: Thrombospondin-1 deficiency exacerbates the pathogenesis of diabetic retinopathy. J Diabetes Metab. (Suppl 12):2013.doi: 10.4172/2155-6156.S12-005. PubMed/NCBI | |
Wu Y, Zhang Q and Zhang R: Kaempferol targets estrogen-related receptor a and suppresses the angiogenesis of human retinal endothelial cells under high glucose conditions. Exp Ther Med. 14:5576–5582. 2017.PubMed/NCBI | |
Xu XH, Zhao C, Peng Q, Xie P and Liu QH: Kaempferol inhibited VEGF and PGF expression and in vitro angiogenesis of HRECs under diabetic-like environment. Braz J Med Biol Res. 50:e53962017. View Article : Google Scholar : PubMed/NCBI | |
Chin HK, Horng CT, Liu YS, Lu CC, Su CY, Chen PS, Chiu HY, Tsai FJ, Shieh PC and Yang JS: Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells. Oncol Rep. 39:2351–2357. 2018.PubMed/NCBI | |
Zhang YW, Shi J, Li YJ and Wei L: Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch Immunol Ther Exp (Warsz). 57:435–445. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kawamura T, Hasegawa K, Morimoto T, Iwai-Kanai E, Miyamoto S, Kawase Y, Ono K, Wada H, Akao M and Kita T: Expression of p300 protects cardiac myocytes from apoptosis in vivo. Biochem Biophys Res Commun. 315:733–738. 2004. View Article : Google Scholar : PubMed/NCBI | |
Xiao J, Sun GB, Sun B, Wu Y, He L, Wang X, Chen RC, Cao L, Ren XY and Sun XB: Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology. 292:53–62. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Xin L, Benson VL, Allen DG and Ju YK: Store-operated calcium entry and the localization of STIM1 and Orai1 proteins in isolated mouse sinoatrial node cells. Front Physiol. 6:692015. View Article : Google Scholar : PubMed/NCBI | |
Swulius MT and Waxham MN: Ca(2+)/calmodulin-dependent protein kinases. Cell Mol Life Sci. 65:2637–2657. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Cui H, Wang W, Zhao B and Lai J: The region-specific activation of Ca2+/calmodulin dependent protein kinase II and extracellular signal-regulated kinases in hippocampus following chronic alcohol exposure. Brain Res Bull. 89:191–196. 2012. View Article : Google Scholar : PubMed/NCBI | |
Swaminathan PD, Purohit A, Soni S, Voigt N, Singh MV, Glukhov AV, Gao Z, He BJ, Luczak ED, Joiner ML, et al: Oxidized CaMKII causes cardiac sinus node dysfunction in mice. J Clin Invest. 121:3277–3288. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schiattarella GG and Hill JA: Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation. 131:1435–1447. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rose BA, Force T and Wang Y: Mitogen-activated protein kinase signaling in the heart: Angels versus demons in a heart-breaking tale. Physiol Rev. 90:1507–1546. 2010. View Article : Google Scholar : PubMed/NCBI | |
Feng H, Cao J, Zhang G and Wang Y: Kaempferol attenuates cardiac hypertrophy via regulation of ASK1/MAPK signaling pathway and oxidative stress. Planta Med. 83:837–845. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weng X, Yu L, Liang P, Chen D, Cheng X, Yang Y, Li L, Zhang T, Zhou B, Wu X, et al: Endothelial MRTF-A mediates angiotensin II induced cardiac hypertrophy. J Mol Cell Cardiol. 80:23–33. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, et al: Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 13:952–961. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Gao L, Guo S, Liu Y, Zhao X, Li R, Yan X, Li Y, Wang S, Niu X, et al: Kaempferol alleviates angiotensin II-induced cardiac dysfunction and interstitial fibrosis in mice. Cell Physiol Biochem. 43:2253–2263. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fan Q, Chen L, Cheng S, Li F, Lau WB, Wang le F and Liu JH: Aging aggravates nitrate-mediated ROS/RNS changes. Oxid Med Cell Longev. 2014:3765152014. View Article : Google Scholar : PubMed/NCBI | |
Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S and Sollott SJ: Role of glycogen synthase kinase-3beta in cardioprotection. Circ. Res. 104:1240–1252. 2009. | |
Suchal K, Malik S, Gamad N, Malhotra RK, Goyal SN, Chaudhary U, Bhatia J, Ojha S and Arya DS: Kaempferol attenuates myocardial ischemic injury via inhibition of MAPK signaling pathway in experimental model of myocardial ischemia-reperfusion injury. Oxid Med Cell Longev. 2016:75807312016. View Article : Google Scholar : PubMed/NCBI | |
Shen AC and Jennings RB: Kinetics of calcium accumulation in acute myocardial ischemic injury. Am J Pathol. 67:441–452. 1972.PubMed/NCBI | |
Guo Z, Liao Z, Huang L, Liu D, Yin D and He M: Kaempferol protects cardiomyocytes against anoxia/reoxygenation injury via mitochondrial pathway mediated by SIRT1. Eur J Pharmacol. 761:245–253. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khader A, Yang WL, Kuncewitch M, Jacob A, Prince JM, Asirvatham JR, Nicastro J, Coppa GF and Wang P: Sirtuin 1 activation stimulates mitochondrial biogenesis and attenuates renal injury after ischemia-reperfusion. Transplantation. 98:148–156. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Ren H, Han J, Wang W, Zheng Q and Wang D: Protective effects of kaempferol against myocardial Ischemia/Reperfusion injury in isolated rat heart via antioxidant activity and inhibition of glycogen synthase kinase-3β. Oxid Med Cell Longev. 2015:4814052015. View Article : Google Scholar : PubMed/NCBI | |
Lei Y, Chen J, Zhang W, Fu W, Wu G, Wei H, Wang Q and Ruan J: In vivo investigation on the potential of galangin, kaempferol and myricetin for protection of D-galactose-induced cognitive impairment. Food Chem. 135:2702–2707. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhong SZ, Ge QH, Qu R, Li Q and Ma SP: Paeonol attenuates neurotoxicity and ameliorates cognitive impairment induced by d-galactose in ICR mice. J Neurol Sci. 277:58–64. 2009. View Article : Google Scholar : PubMed/NCBI | |
Palsamy P, Sivakumar S and Subramanian S: Resveratrol attenuates hyperglycemia-mediated oxidative stress, proinflammatory cytokines and protects hepatocytes ultrastructure in streptozotocin-nicotinamide-induced experimental diabetic rats. Chem Biol Interact. 186:200–210. 2010. View Article : Google Scholar : PubMed/NCBI | |
McEwen BS and Stellar E: Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 153:2093–2101. 1993. View Article : Google Scholar : PubMed/NCBI | |
Whooley MA and Simon GE: Managing depression in medical outpatients. N Engl J Med. 343:1942–1950. 2000. View Article : Google Scholar : PubMed/NCBI | |
Park SH, Sim YB, Han PL, Lee JK and Suh HW: Antidepressant-like effect of kaempferol and quercitirin, isolated from opuntia ficus-indica var. saboten. Exp Neurobiol. 19:30–38. 2010. View Article : Google Scholar : PubMed/NCBI | |
Reeve A, Simcox E and Turnbull D: Ageing and Parkinson's disease: Why is advancing age the biggest risk factor? Ageing Res Rev. 14:19–30. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tian L, Karimi M, Loftin SK, Brown CA, Xia H, Xu J, Mach RH and Perlmutter JS: No differential regulation of dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) binding in a primate model of Parkinson disease. PLoS One. 7:e314392012. View Article : Google Scholar : PubMed/NCBI | |
Han X, Sun S, Sun Y, Song Q, Zhu J, Song N, Chen M, Sun T, Xia M, Ding J, et al: Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: Implications for Parkinson disease. Autophagy. 1–22. 2019.10.1080/15548627.2019.1596481 (Epub ahead of print). View Article : Google Scholar | |
Li S and Pu XP: Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease. Biol Pharm Bull. 34:1291–1296. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Li C, Qiao Y, Lu C, Li J, Song W, Sun J, Zhai X, Niu J, Ren Q and Wen A: Safflower yellow B suppresses HepG2 cell injury induced by oxidative stress through the AKT/Nrf2 pathway. Int J Mol Med. 37:603–612. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ren R, Shi C, Cao J, Sun Y, Zhao X, Guo Y, Wang C, Lei H, Jiang H, Ablat N, et al: Neuroprotective effects of A standardized flavonoid extract of safflower against neurotoxin-induced cellular and animal models of Parkinson's disease. Sci Rep. 6:221352016. View Article : Google Scholar : PubMed/NCBI | |
Jang JY, Kim HN, Kim YR, Choi YW, Choi YH, Lee JH, Shin HK and Choi BT: Hexane extract from Polygonum multiflorum attenuates glutamate-induced apoptosis in primary cultured cortical neurons. J Ethnopharmacol. 145:261–268. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang EJ, Kim GS, Jun M and Song KS: Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells. Food Funct. 5:1395–1402. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lai TW, Zhang S and Wang YT: Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog Neurobiol. 115:157–188. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Sun X, Gong X, Yang Y, Chen C, Shan G and Yao Q: Astragaloside IV from Astragalus membranaceus ameliorates renal interstitial fibrosis by inhibiting inflammation via TLR4/NF-кB in vivo and in vitro. Int Immunopharmacol. 42:18–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Park JH, Maharjan S, Park JA, Choi KS, Park H, Jeong Y, Ahn JH, Kim IH, Lee JC, et al: Sac-1004, a vascular leakage blocker, reduces cerebral ischemia-reperfusion injury by suppressing blood-brain barrier disruption and inflammation. J Neuroinflammation. 14:1222017. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Yang YL, Yang H, Wang YH and Du GH: Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. Int Immunopharmacol. 56:29–35. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Luo H, Zhou X, Cheng CY, Lin L, Liu BL, Liu K, Li P and Yang H: Succinate-induced neuronal mitochondrial fission and hexokinase II malfunction in ischemic stroke: Therapeutical effects of kaempferol. Biochim Biophys Acta. 1863:2307–2318. 2017. View Article : Google Scholar | |
Zhao J, Shu B, Chen L, Tang J, Zhang L, Xie J, Liu X, Xu Y and Qi S: Prostaglandin E2 inhibits collagen synthesis in dermal fibroblasts and prevents hypertrophic scar formation in vivo. Exp Dermatol. 25:604–610. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ledon JA, Savas J, Franca K, Chacon A and Nouri K: Intralesional treatment for keloids and hypertrophic scars: A review. Dermatol Surg. 39:1745–1757. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sarrazy V, Billet F, Micallef L, Coulomb B and Desmoulière A: Mechanisms of pathological scarring: Role of myofibroblasts and current developments. Wound Repair Regen. 19 (Suppl 1):S10–S15. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li H, Yang L, Zhang Y and Gao Z: Kaempferol inhibits fibroblast collagen synthesis, proliferation and activation in hypertrophic scar via targeting TGF-β receptor type I. Biomed Pharmacother. 83:967–974. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rietjens IM, Boersma MG, van der Woude H, Jeurissen SM, Schutte ME and Alink GM: Flavonoids and alkenylbenzenes: Mechanisms of mutagenic action and carcinogenic risk. Mutat Res. 574:124–138. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sheng WY, Chen YR and Wang TC: A major role of PKC theta and NFkappaB in the regulation of hTERT in human T lymphocytes. FEBS Lett. 580:6819–6824. 2006. View Article : Google Scholar : PubMed/NCBI | |
Park SE, Sapkota K, Kim S, Kim H and Kim SJ: Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol. 164:1008–1025. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Fang X, Ge L, Cao F, Zhao L, Wang Z and Xiao W: Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS One. 13:e01975632018. View Article : Google Scholar : PubMed/NCBI | |
Noroozi M, Angerson WJ and Lean ME: Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. Am J Clin Nutr. 67:1210–1218. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bestwick CS, Milne L, Pirie L and Duthie SJ: The effect of short-term kaempferol exposure on reactive oxygen levels and integrity of human (HL-60) leukaemic cells. Biochim Biophys Acta. 1740:340–349. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sahu SC and Gray GC: Kaempferol-induced nuclear DNA damage and lipid peroxidation. Cancer Lett. 85:159–164. 1994. View Article : Google Scholar : PubMed/NCBI | |
Liesveld JL, Abboud CN, Lu C, McNair C, Menon A, Smith A, Rosell K and Rapoport AP: Flavonoid effects on normal and leukemic cells. Leuk Res. 27:517–527. 2003. View Article : Google Scholar : PubMed/NCBI | |
Das A, Majumder D and Saha C: Correlation of binding efficacies of DNA to flavonoids and their induced cellular damage. J Photochem Photobiol B. 170:256–262. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cos P, Calomme M, Sindambiwe JB, De Bruyne T, Cimanga K, Pieters L, Vlietinck AJ and Vanden Berghe D: Cytotoxicity and lipid peroxidation-inhibiting activity of flavonoids. Planta Med. 67:515–519. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gupta A, Kaur CD and Saraf S and Saraf S: Formulation, characterization, and evaluation of ligand-conjugated biodegradable quercetin nanoparticles for active targeting. Artif Cells Nanomed Biotechnol. 44:960–970. 2016.PubMed/NCBI | |
Qian YS, Ramamurthy S, Candasamy M, Shadab M, Kumar RH and Meka VS: Production, characterization and evaluation of kaempferol nanosuspension for improving oral bioavailability. Curr Pharm Biotechnol. 17:549–555. 2016. View Article : Google Scholar : PubMed/NCBI | |
Resende FA, Vilegas W, Dos Santos LC and Varanda EA: Mutagenicity of flavonoids assayed by bacterial reverse mutation (Ames) test. Molecules. 17:5255–5268. 2012. View Article : Google Scholar : PubMed/NCBI | |
Polyakov NE and Kispert LD: Water soluble biocompatible vesicles based on polysaccharides and oligosaccharides inclusion complexes for carotenoid delivery. Carbohydr Polym. 128:207–219. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Wen M, Yu J, Zhang Q, Polyakov NE, Dushkin AV and Su W: Mechanochemical preparation of kaempferol intermolecular complexes for enhancing the solubility and bioavailability. Drug Dev Ind Pharm. 44:1924–1932. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lemos C, Peters GJ, Jansen G, Martel F and Calhau C: Modulation of folate uptake in cultured human colon adenocarcinoma Caco-2 cells by dietary compounds. Eur J Nutr. 46:329–336. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sunoqrot S, Bae JW, Pearson RM, Shyu K, Liu Y, Kim DH and Hong S: Temporal control over cellular targeting through hybridization of folate-targeted dendrimers and PEG-PLA nanoparticles. Biomacromolecules. 13:1223–1230. 2012. View Article : Google Scholar : PubMed/NCBI |