1
|
Blanchette CM, Gross NJ and Altman P:
Rising costs of COPD and the potential for maintenance therapy to
slow the trend. Am Health Drug Benefits. 7:98–106. 2014.PubMed/NCBI
|
2
|
Gupta D, Agarwal R, Aggarwal AN, Maturu
VN, Dhooria S, Prasad KT, Sehgal IS, Yenge LB, Jindal A, Singh N,
et al: Guidelines for diagnosis and management of chronic
obstructive pulmonary disease: Joint ICS/NCCP (I) recommendations.
Lung India. 30:228–267. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang Z, Cheng X, Yue L, Cui W, Zhou W,
Gao J and Yao H: Molecular pathogenesis in chronic obstructive
pulmonary disease and therapeutic potential by targeting
AMP-activated protein kinase. J Cell Physiol. 233:1999–2006. 2018.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kim SW, Rhee CK, Kim KU, Lee SH, Hwang HG,
Kim YI, Kim DK, Lee SD, Oh YM and Yoon HK: Factors associated with
plasma IL-33 levels in patients with chronic obstructive pulmonary
disease. Int J Chron Obstruct Pulmon Dis. 12:395–402. 2017.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Hogg JC, Chu F, Utokaparch S, Woods R,
Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson
HO and Paré PD: The nature of small-airway obstruction in chronic
obstructive pulmonary disease. New Engl J Med. 350:2645–2653. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Brusselle GG, Joos GF and Bracke KR: New
insights into the immunology of chronic obstructive pulmonary
disease. Lancet. 378:1015–1026. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lee N, Shin MS and Kang I: T-cell biology
in aging, with a focus on lung disease. J Gerontol A Biol Sci Med
Sci. 67:254–263. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Molofsky AB, Savage AK and Locksley RM:
Interleukin-33 in tissue homeostasis, injury, and inflammation.
Immunity. 42:1005–1019. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gordon ED, Simpson LJ, Rios CL, Ringel L,
Lachowicz-Scroggins ME, Peters MC, Wesolowska-Andersen A, Gonzalez
JR, MacLeod HJ, Christian LS, et al: Alternative splicing of
interleukin-33 and type 2 inflammation in asthma. Proc Natl Acad
Sci USA. 113:8765–8770. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nasr WF, Sorour SS, El Bahrawy AT,
Boghdadi GS and El Shahaway AA: The role of the level of
interleukin-33 in the therapeutic outcomes of immunotherapy in
patients with allergic rhinitis. Int Arch Otorhinolaryngol.
22:152–156. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Shan S, Li Y, Wang J, Lv Z, Yi D, Huang Q,
Corrigan CJ, Wang W, Quangeng Z and Ying S: Nasal administration of
interleukin-33 induces airways angiogenesis and expression of
multiple angiogenic factors in a murine asthma surrogate.
Immunology. 148:83–91. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kearley J, Silver JS, Sanden C, Liu Z,
Berlin AA, White N, Mori M, Pham TH, Ward CK, Criner GJ, et al:
Cigarette smoke silences innate lymphoid cell function and
facilitates an exacerbated type I interleukin-33-dependent response
to infection. Immunity. 42:566–579. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xia J, Zhao J, Shang J, Li M, Zeng Z, Zhao
J, Wang J, Xu Y and Xie J: Increased IL-33 expression in chronic
obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol.
308:L619–L627. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Agapov E, Battaile JT, Tidwell R, Hachem
R, Patterson GA, Pierce RA, Atkinson JJ and Holtzman MJ: Macrophage
chitinase 1 stratifies chronic obstructive lung disease. Am J
Respir Cell Mol Biol. 41:379–384. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim EY, Battaile JT, Patel AC, You Y,
Agapov E, Grayson MH, Benoit LA, Byers DE, Alevy Y, Tucker J, et
al: Persistent activation of an innate immune response translates
respiratory viral infection into chronic lung disease. Nat Med.
14:633–640. 2008. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Shaykhiev R and Crystal RG: Innate
immunity and chronic obstructive pulmonary disease: A mini-review.
Gerontology. 59:481–489. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Karta MR, Broide DH and Doherty TA:
Insights into group 2 innate lymphoid cells in human airway
disease. Curr Allergy Asthma Rep. 16:82016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Moro K, Yamada T, Tanabe M, Takeuchi T,
Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H and Koyasu S:
Innate production of T(H)2 cytokines by adipose tissue-associated
c-Kit(+)Sca-1(+) lymphoid cells. Nature. 463:540–544. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Neill DR, Wong SH, Bellosi A, Flynn RJ,
Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, et al:
Nuocytes represent a new innate effector leukocyte that mediates
type-2 immunity. Nature. 464:1367–1370. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Price AE, Liang HE, Sullivan BM, Reinhardt
RL, Eisley CJ, Erle DJ and Locksley RM: Systemically dispersed
innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad
Sci USA. 107:11489–11494. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wong SH, Walker JA, Jolin HE, Drynan LF,
Hams E, Camelo A, Barlow JL, Neill DR, Panova V, Koch U, et al:
Transcription factor RORα is critical for nuocyte development. Nat
Immunol. 13:229–236. 2012. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Doherty TA: At the bench: Understanding
group 2 innate lymphoid cells in disease. J Leukoc Biol.
97:455–467. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Huang Y and Paul WE: Inflammatory group 2
innate lymphoid cells. Int Immunol. 28:23–28. 2016.PubMed/NCBI
|
24
|
Salimi M, Barlow JL, Saunders SP, Xue L,
Gutowska-Owsiak D, Wang X, Huang LC, Johnson D, Scanlon ST,
McKenzie AN, et al: A role for IL-25 and IL-33-driven type-2 innate
lymphoid cells in atopic dermatitis. J Exp Med. 210:2939–2950.
2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
De Grove KC, Provoost S, Verhamme FM,
Bracke KR, Joos GF, Maes T and Brusselle GG: Characterization and
quantification of innate lymphoid cell subsets in human lung. PLoS
One. 11:e01459612016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Oczypok EA, Milutinovic PS, Alcorn JF,
Khare A, Crum LT, Manni ML, Epperly MW, Pawluk AM, Ray A and Oury
TD: Pulmonary receptor for advanced glycation end-products promotes
asthma pathogenesis through IL-33 and accumulation of group 2
innate lymphoid cells. J Allergy Clin Immunol. 136:747–756.e4.
2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Bhat TA, Panzica L, Kalathil SG and
Thanavala Y: Immune dysfunction in patients with chronic
obstructive pulmonary disease. Ann Am Thorac Soc. 12 (Suppl
2):S169–S175. 2015.PubMed/NCBI
|
29
|
Lefrançais E, Duval A, Mirey E, Roga S,
Espinosa E, Cayrol C and Girard JP: Central domain of IL-33 is
cleaved by mast cell proteases for potent activation of group-2
innate lymphoid cells. Proc Natl Acad Sci USA. 111:15502–15507.
2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Monticelli LA, Osborne LC, Noti M, Tran
SV, Zaiss DM and Artis D: IL-33 promotes an innate immune pathway
of intestinal tissue protection dependent on amphiregulin-EGFR
interactions. Proc Natl Acad Sci USA. 112:10762–10767. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Mizutani N, Nabe T and Yoshino S:
Interleukin-33 and alveolar macrophages contribute to the
mechanisms underlying the exacerbation of IgE-mediated airway
inflammation and remodelling in mice. Immunology. 139:205–218.
2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Smith D, Helgason H, Sulem P, Bjornsdottir
US, Lim AC, Sveinbjornsson G, Hasegawa H, Brown M, Ketchem RR,
Gavala M, et al: A rare IL33 loss-of-function mutation reduces
blood eosinophil counts and protects from asthma. PLoS Genet.
13:e10066592017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xu H, Turnquist HR, Hoffman R and Billiar
TR: Role of the IL-33-ST2 axis in sepsis. Mil Med Res. 4:32017.
View Article : Google Scholar : PubMed/NCBI
|
34
|
McKenzie AN: Type-2 innate lymphoid cells
in asthma and allergy. Ann Am Thorac Soc. 11 (Suppl 5):S263–S270.
2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mortaz E, Folkerts G and Redegeld F: Mast
cells and COPD. Pulm Pharmacol Ther. 24:367–372. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mohapatra A, Van Dyken SJ, Schneider C,
Nussbaum JC, Liang HE and Locksley RM: Group 2 innate lymphoid
cells utilize the IRF4-IL-9 module to coordinate epithelial cell
maintenance of lung homeostasis. Mucosal Immunol. 9:275–286. 2016.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Silver JS, Kearley J, Copenhaver AM,
Sanden C, Mori M, Yu L, Pritchard GH, Berlin AA, Hunter CA, Bowler
R, et al: Inflammatory triggers associated with exacerbations of
COPD orchestrate plasticity of group 2 innate lymphoid cells in the
lungs. Nat Immunol. 17:626–635. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mjösberg JM, Trifari S, Crellin NK, Peters
CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T and Spits H: Human
IL-25- and IL-33-responsive type 2 innate lymphoid cells are
defined by expression of CRTH2 and CD161. Nat Immunol.
12:1055–1062. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Stier MT, Zhang J, Goleniewska K, Cephus
JY, Rusznak M, Wu L, Van Kaer L, Zhou B, Newcomb DC and Peebles RS
Jr: IL-33 promotes the egress of group 2 innate lymphoid cells from
the bone marrow. J Exp Med. 215:263–281. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Doherty TA, Khorram N, Chang JE, Kim HK,
Rosenthal P, Croft M and Broide DH: STAT6 regulates natural helper
cell proliferation during lung inflammation initiated by
Alternaria. Am J Physiol Lung Cell Mol Physiol. 303:L577–L588.
2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Riedel JH, Becker M, Kopp K, Düster M,
Brix SR, Meyer-Schwesinger C, Kluth LA, Gnirck AC, Attar M, Krohn
S, et al: IL-33-mediated expansion of type 2 innate lymphoid cells
protects from progressive glomerulosclerosis. J Am Soc Nephrol.
28:2068–2080. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Furusawa J, Moro K, Motomura Y, Okamoto K,
Zhu J, Takayanagi H, Kubo M and Koyasu S: Critical role of p38 and
GATA3 in natural helper cell function. J Immunol. 191:1818–1826.
2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chang J, Xia YF, Zhang MZ and Zhang LM:
IL-33 signaling in lung injury. Transl Perioper Pain Med. 1:24–32.
2016.PubMed/NCBI
|
44
|
Hayakawa H, Hayakawa M and Tominaga SI:
Soluble ST2 suppresses the effect of interleukin-33 on lung type 2
innate lymphoid cells. Biochem Biophys Rep. 5:401–407.
2016.PubMed/NCBI
|