1
|
Chwalek K, Tang-Schomer MD, Omenetto FG
and Kaplan DL: In vitro bioengineered model of cortical brain
tissue. Nat Protoc. 10:1362–1373. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Huang KF, Hsu WC, Chiu WT and Wang JY:
Functional improvement and neurogenesis after collagen-GAG matrix
implantation into surgical brain trauma. Biomaterials.
33:2067–2075. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Teng YD, Lavik EB, Qu X, Park KI, Ourednik
J, Zurakowski D, Langer R and Snyder EY: Functional recovery
following traumatic spinal cord injury mediated by unique polymer
scaffold seeded with neural stem cells. Proc Natl Acad Sci USA.
99:3024–3029. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kowalska-Ludwicka K, Cala J, Grobelski B,
Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S and
Pasieka Z: Modified bacterial cellulose tubes for regeneration of
damaged peripheral nerves. Arch Med Sci. 9:527–534. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Huang KF, Hsu WC, Hsiao JK, Chen GS and
Wang JY: Collagen-Glycosaminoglycan Matrix implantation promotes
angiogenesis following surgical brain trauma. BioMed Res Int.
2014:6724092014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bandtlow CE and Zimmerman DR:
Proteoglycans in the developing brain: New conceptual insights for
old proteins. Physiol Rev. 80:1267–1290. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Drobnik J, Pietrucha K, Piera L, Szymański
J and Szczepanowska A: Collagenous scaffolds supplemented with
hyaluronic acid and chondroitin sulfate used for wound fibroblast
and embryonic nerve cell culture. Adv Clin Exp Med. 26:223–230.
2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pietrucha K, Szymański J and Drobnik J:
The behavior of embryonic neural cells within the 3D
micro-structured collagen-based scaffolds. IFMBE Proceedings.
45:549–552. 2015. View Article : Google Scholar
|
9
|
Sirko S, von Holst A, Wizenmann A, Gotz M
and Faissner A: Chondroitin sulphate glycosaminoglycans control
proliferation, radial glia cell differentiation and neurogenesis in
neural stem/progenitor cells. Development. 134:2727–2738. 2007.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Li YY, Choy TH, Ho FC and Chan PB:
Scaffold composition affects cytoskeleton organization cell-matrix
interaction and the cellular fate of human mesenchymal stem cells
upon chondrogenic differentiation. Biomaterials. 52:208–220. 2015.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Milner R and Campbel IL: The integrin
family of cell adhesion molecules has multiple functions within
CNS. J Neurosci Res. 69:286–291. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pietrucha K, Zychowicz M, Podobinska M and
Buzanska L: Functional properties of different collagen scaffolds
to create a biomimetic niche for neurally committed human induced
pluripotent stem cells (iPSC). Folia Neuropathol. 55:110–123. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Pietrucha K: Physicochemical properties of
3D collagen-CS scaffolds for potential use in neural tissue
engineering. Int J Biol Macromol. 80:732–739. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pietrucha K: Development of collagen
cross-linked with dialdehyde cellulose as a potential 3D scaffold
for neural tissue engineering. IFMBE Proceeding. 45:349–352. 2015.
View Article : Google Scholar
|
15
|
Pietrucha K and Safandowska M: Dialdehyde
cellulose-crosslinked collagen and its physicochemical properties.
Process Biochem. 50:2105–2111. 2015. View Article : Google Scholar
|
16
|
Pietrucha K, Marzec E and Kudzin M: Pore
structure and dielectric behaviour of the 3D collagen-DAC scaffolds
designed for nerve tissue repair. Int J Biol Macromol.
92:1298–1306. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rauch U: Extracellular matrix components
associated with remodeling process in brain. Cell Mol Life Sci.
61:2031–2045. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jurga M, Dainiak MB, Sarnowska A,
Jablonska A, Thripathi A, Plieva FM, Savina IN, Strojek L, Jungvid
H, Kumar A, et al: The performance of laminin-containing cryogel
scaffolds in neural tissue regeneration. Biomaterials.
32:3423–3434. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Vaysse L, Beduer A, Sol JC, Vieu C and
Loubinoux I: Micropatterned bioimplant with guided neuronal cells
to promote tissue reconstruction and improve functional recovery
after primary motor cortex insult. Biomaterials. 58:46–53. 2015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Ju R, Wen Y, Gou R, Wang Y and Xu Q: The
experimental therapy on brain ischemia by improvement of local
angiogenesis with tissue engineering in the mouse. Cell Transplant.
23 (Suppl 1):S83–S95. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yu S, Yao S, Wen Y, Wang Y, Wang H and Xu
Q: Angiogenic microspheres promote neural regeneration and motor
function recovery after spinal cord injury in rats. Sci Rep.
6:334282016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tapon-Bretaudière J, Drouet B, Matou S,
Mourão PA, Bros A, Letourner D and Fischer AM: Modulation of
vascular human endothelial rat smooth muscle cell growth by a
fucosylated chondroitin sulphate from echinoderm. Thromb Haemost.
84:332–337. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Deguchi K, Tsuru K, Hayashi T, Takaishi M,
Nagahara M, Nagotani S, Sehara Y, Jin G, Zhang H, Hayakawa S, et
al: Implantation of the new porous gelatin-siloxane hybrid into
brain lesions as a potential scaffod for tissue regeneration. J
Cereb Blood Flow Metab. 26:1263–1273. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Summitomo S, Muramatsu R, Fujii S and
Yamashita T: Vascular endothelial cells promote cortical neurite
outgrowth via an integrin β3-dependent mechanism. Biochem Biophys
Res Commun. 450:593–597. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Emgard M, Hallin U, Karlsson J, Bahr BA,
Brundin P and Blomgren K: Both apoptosis and necrosis occur early
after intracerebral grafting of ventral mesencephalic tissue: A
role for protease activation. J Neurochem. 86:1223–1232. 2003.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Sortwell CE, Pitzer MR and Collier TJ:
Time course of apoptotic cell death within mesencephalic cell
suspension grafts: Implications for improving grafted dopamine
neuron survival. Exp Neurol. 165:268–277. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Marchionini DM, Collier TJ, Pitzer MR and
Sortwell CE: Reassessment of caspase inhibition to augment grafted
dopamine neuron survival. Cell Transplant. 13:273–282. 2004.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Lanfer B, Hermann A, Kirsh M, Freudenberg
U, Reuner U, Werner C and Storch A: Directed growth of adult human
white matter stem cell-derived neurons on aligned fibrillar
collagen. Tissue Eng Part A. 16:1103–1113. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yoshinaga T, Hashimoto E, Ukai W, Ishii T,
Shirasaka T, Kigawa Y, Tateno M, Kaneta H, Watanabe K, Igarashi T,
et al: Effects of atelocollagen on neural stem cell function and
its migrating capacity into brain in psychiatric disease model. J
Neural Transm (Vienna). 120:1491–1498. 2013. View Article : Google Scholar : PubMed/NCBI
|