1
|
Wilke T, Groth A, Mueller S, Pfannkuche M,
Verheyen F, Linder R, Maywald U, Bauersachs R and Breithardt G:
Incidence and prevalence of atrial fibrillation: An analysis based
on 8.3 million patients. Europace. 15:486–493. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Andrade J, Khairy P, Dobrev D and Nattel
S: The clinical profile and pathophysiology of atrial fibrillation:
Relationships among clinical features, epidemiology, and
mechanisms. Circ Res. 114:1453–1468. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ye W, Wang J, Song Y, Yu D, Sun C, Liu C,
Chen F, Zhang Y, Wang F, Harvey RP, et al: A common Shox2-Nkx2-5
antagonistic mechanism primes the pacemaker cell fate in the
pulmonary vein myocardium and sinoatrial node. Development.
142:2521–2532. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nielsen JB, Thorolfsdottir RB, Fritsche
LG, Zhou W, Skov MW, Graham SE, Herron TJ, McCarthy S, Schmidt EM,
Sveinbjornsson G, et al: Biobank-driven genomic discovery yields
new insight into atrial fibrillation biology. Nat Genet.
50:1234–1239. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Huang RT, Xue S, Xu YJ, Zhou M and Yang
YQ: A novel NKX2.5 loss-of-function mutation responsible for
familial atrial fibrillation. Int J Mol Med. 31:1119–1126. 2013.
View Article : Google Scholar : PubMed/NCBI
|
6
|
National Institutes of Health, . Guide for
the Care and Use of Laboratory Animals. 8th. National Academies
Press; Washington: pp. 86–23. 2011
|
7
|
Claycomb WC, Lanson NA Jr, Stallworth BS,
Egeland DB, Delcarpio JB, Bahinski A and Izzo NJ Jr: HL-1 cells: A
cardiac muscle cell line that contracts and retains phenotypic
characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA.
95:2979–2984. 1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lozano-Velasco E, Hernandez-Torres F,
Daimi H, Serra SA, Herraiz A, Hove-Madsen L, Aránega A and Franco
D: Pitx2 impairs calcium handling in a dose-dependent manner by
modulating Wnt signalling. Cardiovasc Res. 109:55–66. 2016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Cardin S, Guasch E, Luo X, Naud P, Le
Quang K, Shi Y, Tardif JC, Comtois P and Nattel S: Role for
MicroRNA-21 in atrial profibrillatory fibrotic remodeling
associated with experimental postinfarction heart failure. Circ
Arrhythm Electrophysiol. 5:1027–1035. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
DiFrancesco D: HCN4, sinus bradycardia and
atrial fibrillation. Arrhythm Electrophysiol Rev. 4:9–13. 2015.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Li YD, Hong YF, Zhang Y, Zhou XH, Ji YT,
Li HL, Hu GJ, Li JX, Sun L, Zhang JH, et al: Association between
reversal in the expression of hyperpolarization-activated cyclic
nucleotide-gated (HCN) channel and age-related atrial fibrillation.
Med Sci Monit. 20:2292–2297. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yang YQ, Liu X, Zhang XL, Wang XH, Tan HW,
Shi HF, Jiang WF and Fang WY: Novel connexin40 missense mutations
in patients with familial atrial fibrillation. Europace.
12:1421–1427. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sun Y, Yang YQ, Gong XQ, Wang XH, Li RG,
Tan HW, Liu X, Fang WY and Bai D: Novel germline GJA5/connexin40
mutations associated with lone atrial fibrillation impair gap
junctional intercellular communication. Hum Mutat. 34:603–609.
2013.PubMed/NCBI
|
15
|
Lübkemeier I, Andrié R, Lickfett L, Bosen
F, Stöckigt F, Dobrowolski R, Draffehn AM, Fregeac J, Schultze JL,
Bukauskas FF, et al: The Connexin40A96S mutation from a patient
with atrial fibrillation causes decreased atrial conduction
velocities and sustained episodes of induced atrial fibrillation in
mice. J Mol Cell Cardiol. 65:19–32. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Houser SR: Role of RyR2 phosphorylation in
heart failure and arrhythmias: Protein kinase A-mediated
hyperphosphorylation of the ryanodine receptor at serine 2808 does
not alter cardiac contractility or cause heart failure and
arrhythmias. Circ Res. 114:1320–1327; discussion 1327. 2014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Samuel TJ, Rosenberry RP, Lee S and Pan Z:
Correcting calcium dysregulation in chronic heart failure using
SERCA2a gene therapy. Int J Mol Sci. 19:2018. View Article : Google Scholar
|
18
|
Bisson JA, Mills B, Paul Helt JC, Zwaka TP
and Cohen ED: Wnt5a and Wnt11 inhibit the canonical Wnt pathway and
promote cardiac progenitor development via the Caspase-dependent
degradation of AKT. Dev Biol. 398:80–96. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cohen ED, Miller MF, Wang Z, Moon RT and
Morrisey EE: Wnt5a and Wnt11 are essential for second heart field
progenitor development. Development. 139:1931–1940. 2012.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Terami H, Hidaka K, Katsumata T, Iio A and
Morisaki T: Wnt11 facilitates embryonic stem cell differentiation
to Nkx2.5-positive cardiomyocytes. Biochem Biophys Res Commun.
325:968–975. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nagy II, Railo A, Rapila R, Hast T,
Sormunen R, Tavi P, Räsänen J and Vainio SJ: Wnt-11 signalling
controls ventricular myocardium development by patterning
N-cadherin and beta-catenin expression. Cardiovasc Res. 85:100–109.
2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Panáková D, Werdich AA and Macrae CA:
Wnt11 patterns a myocardial electrical gradient through regulation
of the L-type Ca(2+) channel. Nature. 466:874–878. 2010. View Article : Google Scholar : PubMed/NCBI
|