1
|
Pulikkotil SJ and Nath S: Effects of
curcumin on crevicular levels of IL-1β and CCL28 in experimental
gingivitis. Aust Dent J. 60:317–327. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zini A, Mann J, Mazor S and Vered Y: The
efficacy of aged garlic extract on gingivitis-A randomized clinical
trial. J Clin Dent. 29:52–56. 2018.PubMed/NCBI
|
3
|
Safiaghdam H, Oveissi V, Bahramsoltani R,
Farzaei MH and Rahimi R: Medicinal plants for gingivitis: A review
of clinical trials. Iran J Basic Med Sci. 21:978–991.
2018.PubMed/NCBI
|
4
|
Ara T, Nakatani S, Kobata K, Sogawa N and
Sogawa C: The biological efficacy of natural products against acute
and chronic inflammatory diseases in the oral region. Medicines
(Basel). 5:1222018. View Article : Google Scholar
|
5
|
Ramesh A, Varghese SS, Doraiswamy JN and
Malaiappan S: Herbs as an antioxidant arsenal for periodontal
diseases. J Intercult Ethnopharmacol. 5:92–96. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Benso B, Rosalen PL, Alencar SM and Murata
RM: Malva sylvestris inhibits inflammatory response in oral
human cells. An in vitro infection model. PLoS One.
10:e01403312015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang HH, Lee HM, Raja V, Hou W, Iacono VJ,
Scaduto J, Johnson F, Golub LM and Gu Y: Enhanced efficacy of
chemically modified curcumin in experimental periodontitis:
Systemic implications. J Exp Pharmacol. 11:1–14. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Salvi GE and Lang NP: Host response
modulation in the management of periodontal diseases. J Clin
Periodontol. 32 (Suppl 6):108–129. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sağlam M, Köseoğlu S, Hatipoğlu M, Esen HH
and Köksal E: Effect of sumac extract on serum oxidative status,
RANKL/OPG system and alveolar bone loss in experimental
periodontitis in rats. J Appl Oral Sci. 23:33–41. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tominari T, Matsumoto C, Watanabe K,
Hirata M, Grundler FM, Miyaura C and Inada M: Epigallocatechin
gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory
bone resorption, and protects against alveolar bone loss in mice.
FEBS Open Bio. 5:522–527. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Asahi Y, Noiri Y, Miura J, Maezono H,
Yamaguchi M, Yamamoto R, Azakami H, Hayashi M and Ebisu S: Effects
of the tea catechin epigallocatechin gallate on Porphyromonas
gingivalis biofilms. J Appl Microbiol. 116:1164–1171. 2014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Tominari T, Ichimaru R, Yoshinouchi S,
Matsumoto C, Watanabe K, Hirata M, Grundler FMW, Inada M and
Miyaura C: Effects of O-methylated (−)-epigallocatechin
gallate (EGCG) on LPS-induced osteoclastogenesis, bone resorption,
and alveolar bone loss in mice. FEBS Open Bio. 7:1972–1981. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Hrishi T, Kundapur P, Naha A, Thomas B,
Kamath S and Bhat G: Effect of adjunctive use of green tea
dentifrice in periodontitis patients - A randomized controlled
pilot study. Int J Dent Hyg. 14:178–183. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hirasawa M, Takada K, Makimura M and Otake
S: Improvement of periodontal status by green tea catechin using a
local delivery system: A clinical pilot study. J Periodontal Res.
37:433–438. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wu YH, Kuraji R, Taya Y, Ito H and Numabe
Y: Effects of theaflavins on tissue inflammation and bone
resorption on experimental periodontitis in rats. J Periodontal
Res. 53:1009–1019. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lombardo Bedran TB, Morin MP, Palomari
Spolidorio D and Grenier D: Black tea extract and its theaflavin
derivatives inhibit the growth of periodontopathogens and modulate
interleukin-8 and beta-defensin secretion in oral epithelial cells.
PLoS One. 10:e01431582015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hosokawa Y, Hosokawa I, Ozaki K, Nakanishi
T, Nakae H and Matsuo T: Tea polyphenols inhibit IL-6 production in
tumor necrosis factor superfamily 14-stimulated human gingival
fibroblasts. Mol Nutr Food Res. 54 (Suppl 2):S151–S158. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Nagpal M and Sood S: Role of curcumin in
systemic and oral health: An overview. J Nat Sci Biol Med. 4:3–7.
2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Guimarães MR, Coimbra LS, de Aquino SG,
Spolidorio LC, Kirkwood KL and Rossa C Jr: Potent anti-inflammatory
effects of systemically administered curcumin modulate periodontal
disease in vivo. J Periodontal Res. 46:269–279. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Guimarães MR, de Aquino SG, Coimbra LS,
Spolidorio LC, Kirkwood KL and Rossa C Jr: Curcumin modulates the
immune response associated with LPS-induced periodontal disease in
rats. Innate Immun. 18:155–163. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shetty S, Thomas B, Shetty V, Bhandary R
and Shetty RM: An in-vitro evaluation of the efficacy of garlic
extract as an antimicrobial agent on periodontal pathogens: A
microbiological study. Ayu. 34:445–451. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tsui PF, Lin CS, Ho LJ and Lai JH: Spices
and atherosclerosis. Nutrients. 10:17242018. View Article : Google Scholar
|
23
|
Ried K: Garlic lowers blood pressure in
hypertensive individuals, regulates serum cholesterol, and
stimulates immunity. An updated meta-analysis and review. J Nutr.
146:389S–396S. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Moutia M, Habti N and Badou A: In vitro
and in vivo immunomodulator activities of Allium sativum L.
Evid Based Complement Alternat Med. 2018:49846592018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bakri IM and Douglas CW: Inhibitory effect
of garlic extract on oral bacteria. Arch Oral Biol. 50:645–651.
2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bachrach G, Jamil A, Naor R, Tal G, Ludmer
Z and Steinberg D: Garlic allicin as a potential agent for
controlling oral pathogens. J Med Food. 14:1338–1343. 2011.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Velliyagounder K, Ganeshnarayan K,
Velusamy SK and Fine DH: In vitro efficacy of diallyl sulfides
against the periodontopathogen Aggregatibacter
actinomycetemcomitans. Antimicrob Agents Chemother.
56:2397–2407. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Suzuki JI, Kodera Y, Miki S, Ushijima M,
Takashima M, Matsutomo T and Morihara N: Anti-inflammatory action
of cysteine derivative S-1-propenylcysteine by inducing MyD88
degradation. Sci Rep. 8:141482018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Matsumoto S, Nakanishi R, Li D, Alani A,
Rezaeian P, Prabhu S, Abraham J, Fahmy MA, Dailing C, Flores F, et
al: Aged garlic extract reduces low attenuation plaque in coronary
arteries of patients with metabolic syndrome in a prospective
randomized double-blind study. J Nutr. 146:427S–432S. 2016.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zeb I, Ahmadi N, Nasir K, Kadakia J,
Larijani VN, Flores F, Li D and Budoff MJ: Aged garlic extract and
coenzyme Q10 have favorable effect on inflammatory markers and
coronary atherosclerosis progression: A randomized clinical trial.
J Cardiovasc Dis Res. 3:185–190. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ried K, Travica N and Sali A: The effect
of aged garlic extract on blood pressure and other cardiovascular
risk factors in uncontrolled hypertensives: The AGE at Heart trial.
Integr Blood Press Control. 9:9–21. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Anandasadagopan SK, Sundaramoorthy C,
Pandurangan AK, Nagarajan V, Srinivasan K and Ganapasam S:
S-Allyl cysteine alleviates inflammation by modulating the
expression of NF-κB during chromium (VI)-induced hepatotoxicity in
rats. Hum Exp Toxicol. 36:1186–1200. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hiramatsu K, Tsuneyoshi T, Ogawa T and
Morihara N: Aged garlic extract enhances heme oxygenase-1 and
glutamate-cysteine ligase modifier subunit expression via the
nuclear factor erythroid 2-related factor 2-antioxidant response
element signaling pathway in human endothelial cells. Nutr Res.
36:143–149. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tsuneyoshi T, Kunimura K and Morihara N:
S-1-Propenylcysteine augments BACH1 degradation and heme oxygenase
1 expression in a nitric oxide-dependent manner in endothelial
cells. Nitric Oxide. 84:22–29. 2019. View Article : Google Scholar : PubMed/NCBI
|