1
|
Yellon DM and Hausenloy DJ: Myocardial
reperfusion injury. N Engl J Med. 357:1121–1135. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Humphries KH, Izadnegahdar M, Sedlak T,
Saw J, Johnston N, Schenck-Gustafsson K, Shah RU, Regitz-Zagrosek
V, Grewal J, Vaccarino V, et al: Sex differences in cardiovascular
disease-impact on care and outcomes. Front Neuroendocrinol.
46:46–70. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gu C, Li T, Jiang S, Yang Z, Lv J, Yi W,
Yang Y and Fang M: AMP-activated protein kinase sparks the fire of
cardioprotection against myocardial ischemia and cardiac ageing.
Ageing Res Rev. 47:168–175. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Shvedova M, Anfinogenova Y,
Atochina-Vasserman EN, Schepetkin IA and Atochin DN: c-Jun
N-terminal kinases (JNKs) in myocardial and cerebral
ischemia/reperfusion injury. Front Pharmacol. 9:7152018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yu LM, Di WC, Dong X, Li Z, Zhang Y, Xue
XD, Xu YL, Zhang J, Xiao X, Han JS, et al: Melatonin protects
diabetic heart against ischemia-reperfusion injury, role of
membrane receptor-dependent cGMP-PKG activation. Biochim Biophys
Acta Mol Basis Dis. 1864:563–578. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sun MS, Jin H, Sun X, Huang S, Zhang FL,
Guo ZN and Yang Y: Free radical damage in ischemia-reperfusion
injury: An obstacle in acute ischemic stroke after
revascularization therapy. Oxid Med Cell Longev. 2018:38049792018.
View Article : Google Scholar : PubMed/NCBI
|
7
|
González-Montero J, Brito R, Gajardo AI
and Rodrigo R: Myocardial reperfusion injury and oxidative stress:
Therapeutic opportunities. World J Cardiol. 10:74–86. 2018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang CF: Clinical manifestations and basic
mechanisms of myocardial ischemia/reperfusion injury. Ci Ji Yi Xue
Za Zhi. 30:209–215. 2018.PubMed/NCBI
|
9
|
Kucinskaite A, Briedis V and Savickas A:
Experimental analysis of therapeutic properties of Rhodiola rosea
L. and its possible application in medicine. Medicina (Kaunas).
40:614–619. 2004.PubMed/NCBI
|
10
|
Chang X, Luo F, Jiang W, Zhu L, Gao J, He
H, Wei T, Gong S and Yan T: Protective activity of salidroside
against ethanol-induced gastric ulcer via the MAPK/NF-κB pathway
in vivo and in vitro. Int Immunopharmacol.
28:604–615. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhu L, Wei T, Chang X, He H, Gao J, Wen Z
and Yan T: Effects of salidroside on myocardial injury in vivo
in vitro via regulation of Nox/NF-κB/AP1 Pathway. Inflammation.
38:1589–1598. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen L, Liu P, Feng X and Ma C:
Salidroside suppressing LPS-induced myocardial injury by inhibiting
ROS-mediated PI3K/Akt/mTOR pathway in vitro and in
vivo. J Cell Mol Med. 21:3178–3189. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sun MY, Ma DS, Zhao S, Wang L, Ma CY and
Bai Y: Salidroside mitigates hypoxia/reoxygenation injury by
alleviating endoplasmic reticulum stress induced apoptosis in H9c2
cardiomyocytes. Mol Med Rep. 18:3760–3768. 2018.PubMed/NCBI
|
14
|
Chang X, Zhang K, Zhou R, Luo F, Zhu L,
Gao J, He H, Wei T, Yan T and Ma C: Cardioprotective effects of
salidroside on myocardial ischemia-reperfusion injury in coronary
artery occlusion-induced rats and Langendorff-perfused rat hearts.
Int J Cardiol. 215:532–544. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhu L, Wei T, Gao J, Chang X, He H, Luo F,
Zhou R, Ma C, Liu Y and Yan T: The cardioprotective effect of
salidroside against myocardial ischemia reperfusion injury in rats
by inhibiting apoptosis and inflammation. Apoptosis. 20:1433–1443.
2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen J and Wang DZ: microRNAs in
cardiovascular development. J Mol Cell Cardiol. 52:949–957. 2012.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Cheng Y and Zhang C: MicroRNA-21 in
cardiovascular disease. J Cardiovasc Transl Res. 3:251–255. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Oyama Y, Bartman CM, Gile J and Eckle T:
Circadian MicroRNAs in Cardioprotection. Curr Pharm Des.
23:3723–3730. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Panagal M, Biruntha M, Vidhyavathi RM,
Sivagurunathan P, Senthilkumar SR and Sekar D: Dissecting the role
of miR-21 in different types of stroke. Gene. 681:69–72. 2019.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Pordzik J, Pisarz K, De Rosa S, Jones AD,
Eyileten C, Indolfi C, Malek L and Postula M: The potential role of
platelet-related micrornas in the development of cardiovascular
events in high-risk populations, including diabetic patients: A
review. Front Endocrinol (Lausanne). 9:742018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pan YQ, Li J, Li XW, Li YC, Li J and Lin
JF: Effect of miR-21/TLR4/NF-κB pathway on myocardial apoptosis in
rats with myocardial ischemia-reperfusion. Eur Rev Med Pharmacol
Sci. 22:7928–7937. 2018.PubMed/NCBI
|
22
|
Tong Z, Tang Y, Jiang B, Wu Y, Liu Y, Li Y
and Xiao X: Phosphorylation of nucleolin is indispensable to
upregulate miR-21 and inhibit apoptosis in cardiomyocytes. J Cell
Physiol. 234:4044–4053. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xu X, Kriegel AJ, Jiao X, Liu H, Bai X,
Olson J, Liang M and Ding X: miR-21 in ischemia/reperfusion injury:
A double-edged sword? Physiol Genomics. 46:789–797. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu K, Ma L, Zhou F, Yang Y, Hu HB, Wang L
and Zhong L: Identification of microRNAs related to myocardial
ischemic reperfusion injury. J Cell Physiol. 234:11380–11390. 2018.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Ye Y, Perez-Polo JR, Qian J and Birnbaum
Y: The role of microRNA in modulating myocardial
ischemia-reperfusion injury. Physiol Genomics. 43:534–542. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Cheng J, Wu Q, Lv R, Huang L, Xu B, Wang
X, Chen A and He F: MicroRNA-449a inhibition protects H9C2 cells
against hypoxia/reoxygenation-induced injury by targeting the
notch-1 signaling pathway. Cell Physiol Biochem. 46:2587–2600.
2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Gao J, He H, Jiang W, Chang X, Zhu L, Luo
F, Zhou R, Ma C and Yan T: Salidroside ameliorates cognitive
impairment in a d-galactose-induced rat model of Alzheimer's
disease. Behav Brain Res. 293:27–33. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang J, Xiao L, Zhu L, Hu M, Wang Q and
Yan T: The effect of synthetic salidroside on cytokines and airway
inflammation of asthma induced by diisocyanate (TDI) in mice by
regulating GATA3/T-bet. Inflammation. 38:697–704. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang Y, Xu P, Wang Y, Liu H, Zhou Y and
Cao X: The protection of salidroside of the heart against acute
exhaustive injury and molecular mechanism in rat. Oxid Med Cell
Longev. 2013:5078322013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xu ZW, Chen X, Jin XH, Meng XY, Zhou X,
Fan FX, Mao SY, Wang Y, Zhang WC, Shan NN, et al: SILAC-based
proteomic analysis reveals that salidroside antagonizes cobalt
chloride-induced hypoxic effects by restoring the tricarboxylic
acid cycle in cardiomyocytes. J Proteomics. 130:211–220. 2016.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Han Q, Zhang HY, Zhong BL, Zhang B and
Chen H: Antiapoptotic effect of recombinant HMGB1 A-box protein via
regulation of microRNA-21 in myocardial ischemia-reperfusion injury
model in rats. DNA Cell Biol. 35:192–202. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Francis A and Baynosa R:
Ischaemia-reperfusion injury and hyperbaric oxygen pathways: A
review of cellular mechanisms. Diving Hyperb Med. 47:110–117.
2017.PubMed/NCBI
|
34
|
Han J, Xiao Q, Lin YH, Zheng ZZ, He ZD, Hu
J and Chen LD: Neuroprotective effects of salidroside on focal
cerebral ischemia/reperfusion injury involve the nuclear erythroid
2-related factor 2 pathway. Neural Regen Res. 10:1989–96. 2015.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Xing SS, Li J, Chen L, Yang YF, He PL, Li
J and Yang J: Salidroside attenuates endothelial cellular
senescence via decreasing the expression of inflammatory cytokines
and increasing the expression of SIRT3. Mech Ageing Dev. 175:1–6.
2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhong Z, Han J, Zhang J, Xiao Q, Hu J and
Chen L: Pharmacological activities, mechanisms of action, and
safety of salidroside in the central nervous system. Drug Des Devel
Ther. 12:1479–1489. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhu Y, Zhang YJ, Liu WW, Shi AW and Gu N:
Salidroside Suppresses HUVECs cell injury induced by oxidative
stress through activating the Nrf2 signaling pathway. Molecules.
21(pii): E10332016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Juránek I and Bezek S: Controversy of free
radical hypothesis: Reactive oxygen species-cause or consequence of
tissue injury? Gen Physiol Biophys. 24:263–278. 2005.PubMed/NCBI
|
39
|
Sena CM, Leandro A, Azul L, Seiça R and
Perry G: Vascular oxidative stress: Impact and therapeutic
approaches. Front Physiol. 9:16682018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sies H: Oxidative stress: A concept in
redox biology and medicine. Redox Biol. 4:180–183. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Peng J, Huang N, Huang S, Li L, Ling Z,
Jin S, Huang A, Lin K and Zou X: Effect of miR-21 down-regulated by
H2O2 on osteogenic differentiation of
MC3T3-E1 cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.
32:276–284. 2018.(In Chinese). PubMed/NCBI
|
42
|
Shi B, Wang Y, Zhao R, Long X, Deng W and
Wang Z: Bone marrow mesenchymal stem cell-derived exosomal miR-21
protects C-kit+ cardiac stem cells from oxidative injury through
the PTEN/PI3K/Akt axis. PLoS One. 13:e01916162018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ong SB, Hernández-Reséndiz S,
Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA and
Hausenloy DJ: Inflammation following acute myocardial infarction:
Multiple players, dynamic roles, and novel therapeutic
opportunities. Pharmacol Ther. 186:73–87. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang Z, Hu W, Lu C, Ma Z, Jiang S, Gu C,
Acuña-Castroviejo D and Yang Y: Targeting NLRP3 (nucleotide-binding
domain, leucine-rich-containing family, pyrin domain-containing-3)
inflammasome in cardiovascular disorders. Arterioscler Thromb Vasc
Biol. 38:2765–2779. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kalogeris T, Baines CP, Krenz M and
Korthuis RJ: Ischemia/Reperfusion. Compr Physiol. 7:113–170. 2016.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Xu T, Qin G, Jiang W, Zhao Y, Xu Y and Lv
X: 6-gingerol protects heart by suppressing myocardial
ischemia/reperfusion induced inflammation via the
PI3K/Akt-dependent mechanism in rats. Evid Based Complement
Alternat Med. 2018:62096792018. View Article : Google Scholar : PubMed/NCBI
|
47
|
He H, Chang X, Gao J, Zhu L, Miao M and
Yan T: Salidroside mitigates sepsis-induced myocarditis in rats by
regulating IGF-1/PI3K/Akt/GSK-3β Signaling. Inflammation.
38:2178–2184. 2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Song N, Zhang T, Xu X, Lu Z, Yu X, Fang Y,
Hu J, Jia P, Teng J and Ding X: miR-21 protects against
ischemia/reperfusion-induced acute kidney injury by preventing
epithelial cell apoptosis and inhibiting dendritic cell maturation.
Front Physiol. 9:7902018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang W and Shu L: Upregulation of miR-21
by ghrelin ameliorates ischemia/reperfusion-induced acute kidney
injury by inhibiting inflammation and cell apoptosis. DNA Cell
Biol. 35:417–25. 2016. View Article : Google Scholar : PubMed/NCBI
|