1
|
Gurtner GC, Werner S, Barrandon Y and
Longaker MT: Wound repair and regeneration. Nature. 453:314–321.
2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bao P, Kodra A, Tomic-Canic M, Golinko MS,
Ehrlich HP and Brem H: The role of vascular endothelial growth
factor in wound healing. J Surg Res. 153:347–358. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xue M, Zhao R, Lin H and Jackson C:
Delivery systems of current biologicals for the treatment of
chronic cutaneous wounds and severe burns. Adv Drug Deliv Rev.
129:219–241. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Werner S and Grose R: Regulation of wound
healing by growth factors and cytokines. Physiol Rev. 83:835–870.
2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Horsburgh S, Fullard N, Roger M, Degnan A,
Todryk S, Przyborski S and O'Reilly S: MicroRNAs in the skin: Role
in development, homoeostasis and regeneration. Clin Sci (Lond).
131:1923–1940. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Brouard M and Barrandon Y: In-vivo
dedifferentiation of keratinocytes to epidermal stem cells. Lancet.
359:528–529. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Levy V, Lindon C, Zheng Y, Harfe BD and
Morgan BA: Epidermal stem cells arise from the hair follicle after
wounding. FASEB J. 21:1358–1366. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Blanpain C and Fuchs E: Epidermal stem
cells of the skin. Annu Rev Cell Dev Biol. 22:339–373. 2006.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Beck B and Blanpain C: Mechanisms
regulating epidermal stem cells. EMBO J. 31:2067–2075. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Grosshans H and Slack FJ: Micro-RNAs:
Small is plentiful. J Cell Biol. 156:17–21. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lewis CJ: Stem cell application in acute
burn care and reconstruction. J Wound Care. 22:7–8, 10, 12–16.
2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Song Z, Liu D, Peng Y, Li J, Zhang Z and
Ning P: Differential microRNA expression profile comparison between
epidermal stem cells and differentiated keratinocytes. Mol Med Rep.
11:2285–2291. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu Y, Zhong L, Liu D, Ye H, Mao Y and Hu
Y: Differential miRNA expression profiles in human keratinocytes in
response to protein kinase C inhibitor. Mol Med Rep. 16:6608–6619.
2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Qu M and Nourbakhsh M: Current
experimental models of burns. Discov Med. 23:95–103.
2017.PubMed/NCBI
|
15
|
Banerjee J and Sen CK: microRNA and wound
healing. Adv Exp Med Biol. 888:291–305. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Herter EK and Xu Landén N: Non-coding
RNAs: New players in skin wound healing. Adv Wound Care (New
Rochelle). 6:93–107. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Meng Z, Zhou D, Gao Y, Zeng M and Wang W:
miRNA delivery for skin wound healing. Adv Drug Deliv Rev.
129:308–318. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Berindan-Neagoe I, Monroig PC, Pasculli B
and Calin GA: MicroRNAome genome: A treasure for cancer diagnosis
and therapy. CA Cancer J Clin. 64:311–336. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tang L, Chen HY, Hao NB, Tang B, Guo H,
Yong X, Dong H and Yang SM: Microrna inhibitors: Natural and
artificial sequestration of microrna. Cancer Lett. 407:139–147.
2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Paul CP, Good PD, Li SX, Kleihauer A,
Rossi JJ and Engelke DR: Localized expression of small RNA
inhibitors in human cells. Mol Ther. 7:237–247. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mullard A: Oncology trials gear up for
high-throughput sequencing. Nat Rev Drug Discov. 11:339–340. 2012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang L, Zheng Z, Zhou Q, Bai X, Fan L,
Yang C, Su L and Hu D: miR-155 promotes cutaneous wound healing
through enhanced keratinocytes migration by MMP-2. J Mol Histol.
48:147–155. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mori R, Tanaka K and Shimokawa I:
Identification and functional analysis of inflammation-related
miRNAs in skin wound repair. Dev Growth Differ. 60:306–315. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Fomicheva KA, Knyazev EN and Mal'tseva DV:
hsa-miR-1973 MicroRNA is significantly and differentially expressed
in MDA-MB-231 cells of breast adenocarcinoma and xenografts derived
from the tumor. Bull Exp Biol Med. 163:660–662. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang B, Li J, Sun M, Sun L and Zhang X:
miRNA expression in breast cancer varies with lymph node metastasis
and other clinicopathologic features. IUBMB Life. 66:371–377. 2014.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Sen CK and Ghatak S: miRNA control of
tissue repair and regeneration. Am J Pathol. 185:2629–2640. 2015.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Mei Q, Li X, Zhang K, Wu Z, Li X, Meng Y,
Guo M, Luo G, Fu X and Han W: Genetic and methylation-induced loss
of miR-181a2/181b2 within chr9q33.3 facilitates tumor growth of
cervical cancer through the PIK3R3/Akt/FoxO signaling pathway. Clin
Cancer Res. 23:575–586. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yang Y, Ji C, Guo S, Su X, Zhao X, Zhang
S, Liu G, Qiu X, Zhang Q, Guo H and Chen H: The miR-486-5p plays a
causative role in prostate cancer through negative regulation of
multiple tumor suppressor pathways. Oncotarget. 8:72835–72846.
2017.PubMed/NCBI
|
29
|
Lechman ER, Gentner B, Ng SWK, Schoof EM,
van Galen P, Kennedy JA, Nucera S, Ciceri F, Kaufmann KB, Takayama
N, et al: miR-126 regulates distinct self-renewal outcomes in
normal and malignant hematopoietic stem cells. Cancer Cell.
29:602–606. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Raffel S and Trumpp A: Mir-126 drives
quiescence and self-renewal in leukemic stem cells. Cancer Cell.
29:133–135. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xu X, Fan Z, Kang L, Han J, Jiang C, Zheng
X, Zhu Z, Jiao H, Lin J, Jiang K, et al: Hepatitis B virus X
protein represses miRNA-148a to enhance tumorigenesis. J Clin
Invest. 123:630–645. 2013.PubMed/NCBI
|
32
|
Zhou W, Liu L, Xue Y, Zheng J, Liu X, Ma
J, Li Z and Liu Y: Combination of endothelial-monocyte-activating
polypeptide-II with temozolomide suppress malignant biological
behaviors of human glioblastoma stem cells via miR-590-3p/MACC1
Inhibiting PI3K/AKT/mTOR signal pathway. Front Mol Neurosci.
10:682017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang Y, Zhang X, Tang W, Lin Z, Xu L, Dong
R, Li Y, Li J, Zhang Z, Li X, et al: Mir-130a upregulates mTOR
pathway by targeting TSC1 and is transactivated by NF-κB in
high-grade serous ovarian carcinoma. Cell Death Differ.
24:2089–2100. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Matter MS, Decaens T, Andersen JB and
Thorgeirsson SS: Targeting the mTOR pathway in hepatocellular
carcinoma: Current state and future trends. J Hepatol. 60:855–865.
2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Minna E, Romeo P, Dugo M, De Cecco L,
Todoerti K, Pilotti S, Perrone F, Seregni E, Agnelli L, Neri A,
Greco A and Borrello MG: miR-451a is underexpressed and targets
AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget.
7:12731–12747. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Fujihara S, Morishita A, Ogawa K, Tadokoro
T, Chiyo T, Kato K, Kobara H, Mori H, Iwama H and Masaki T: The
angiotensin II type 1 receptor antagonist telmisartan inhibits cell
proliferation and tumor growth of esophageal adenocarcinoma via the
AMPKα/mTOR pathway in vitro and in vivo. Oncotarget. 8:8536–8549.
2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wörthmüller J, Blum W, Pecze L, Salicio V
and Schwaller B: Calretinin promotes invasiveness and EMT in
malignant mesothelioma cells involving the activation of the FAK
signaling pathway. Oncotarget. 9:36256–36272. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Jin H, He Y, Zhao P, Hu Y, Tao J, Chen J
and Huang Y: Targeting lipid metabolism to overcome EMT-associated
drug resistance via integrin β3/FAK pathway and tumor-associated
macrophage repolarization using legumain-activatable delivery.
Theranostics. 9:265–278. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Song J, Ye B, Liu H, Bi R, Zhang N, Hu J
and Luo E: Fak-Mapk, hippo and Wnt signalling pathway expression
and regulation in distraction osteogenesis. Cell Prolif.
51:e124532018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hou C, Zhang Z, Zhang Z, Wu P, Zhao X, Fu
M, Sheng P, Kang Y and Liao W: Presence and function of
microRNA-92a in chondrogenic ATDC5 and adipose-derived mesenchymal
stem cells. Mol Med Rep. 12:4877–4886. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Cui L, Li Y, Lv X, Li J, Wang X, Lei Z and
Li X: Expression of nicroRNA-301a and its functional roles in
malignant melanoma. Cell Physiol Biochem. 40:230–244. 2016.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Chen K, Liu MX, Mak CS, Yung MM, Leung HY,
Xu D, Ngu SF, Chan KK, Yang H, Ngan HY and Chan DW:
Methylation-associated silencing of miR-193a-3p promotes ovarian
cancer aggressiveness by targeting GRB7 and MAPK/ERK pathways.
Theranostics. 8:423–436. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Shu YJ, Bao RF, Jiang L, Wang Z, Wang XA,
Zhang F, Liang HB, Li HF, Ye YY, Xiang SS, et al: MicroRNA-29c-5p
suppresses gallbladder carcinoma progression by directly targeting
CPEB4 and inhibiting the MAPK pathway. Cell Death Differ.
24:445–457. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chen HX, Xu XX, Tan BZ, Zhang Z and Zhou
XD: MicroRNA-29b Inhibits angiogenesis by targeting VEGFA through
the MAPK/ERK and PI3K/Akt signaling pathways in endometrial
carcinoma. Cell Physiol Biochem. 41:933–946. 2017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ahmed MI, Alam M, Emelianov VU,
Poterlowicz K, Patel A, Sharov AA, Mardaryev AN and Botchkareva NV:
MicroRNA-214 controls skin and hair follicle development by
modulating the activity of the Wnt pathway. J Cell Biol.
207:549–567. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shen X, Pan B, Zhou H, Liu L, Lv T, Zhu J,
Huang X and Tian J: Differentiation of mesenchymal stem cells into
cardiomyocytes is regulated by miRNA-1-2 via WNT signaling pathway.
J Biomed Sci. 24:292017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Lu J, Wei JH, Feng ZH, Chen ZH, Wang YQ,
Huang Y, Fang Y, Liang YP, Cen JJ, Pan YH, et al: miR-106b-5p
promotes renal cell carcinoma aggressiveness and stem-cell-like
phenotype by activating Wnt/β-catenin signalling. Oncotarget.
8:21461–21471. 2017.PubMed/NCBI
|
48
|
El Helou R, Pinna G, Cabaud O, Wicinski J,
Bhajun R, Guyon L, Rioualen C, Finetti P, Gros A, Mari B, et al:
miR-600 acts as a bimodal switch that regulates breast cancer stem
cell fate through WNT signaling. Cell Rep. 18:2256–2268. 2017.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Papaccio F, Paino F, Regad T, Papaccio G,
Desiderio V and Tirino V: Concise review: Cancer cells, cancer stem
cells, and mesenchymal stem cells: Influence in cancer development.
Stem Cells Transl Med. 6:2115–2125. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Mele L, Vitiello PP, Tirino V, Paino F, De
Rosa A, Liccardo D, Papaccio G and Desiderio V: Changing paradigms
in Cranio-facial regeneration: Current and new strategies for the
activation of endogenous stem cells. Front Physiol. 7:622016.
View Article : Google Scholar : PubMed/NCBI
|