ERK/MAPK signalling pathway and tumorigenesis (Review)
- Authors:
- Yan‑Jun Guo
- Wei‑Wei Pan
- Sheng‑Bing Liu
- Zhong‑Fei Shen
- Ying Xu
- Ling‑Ling Hu
-
Affiliations: Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China - Published online on: January 15, 2020 https://doi.org/10.3892/etm.2020.8454
- Pages: 1997-2007
-
Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Keshet Y and Seger R: The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol. 661:3–38. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sabio G and Davis RJ: TNF and MAP kinase signalling pathways. Semin Immunol. 26:237–245. 2014. View Article : Google Scholar : PubMed/NCBI | |
Plotnikov A, Zehorai E, Procaccia S and Seger R: The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta. 1813:1619–1633. 2011. View Article : Google Scholar : PubMed/NCBI | |
Eblen ST: Extracellular-regulated kinases: Signaling from ras to ERK substrates to control biological outcomes. Adv Cancer Res. 138:99–142. 2018. View Article : Google Scholar : PubMed/NCBI | |
Roskoski R Jr: ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res. 66:105–143. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wortzel I and Seger R: The ERK cascade: Distinct functions within various subcellular organelles. Genes Cancer. 2:195–209. 2011. View Article : Google Scholar : PubMed/NCBI | |
Seternes OM, Kidger AM and Keyse SM: Dual-specificity MAP kinase phosphatases in health and disease. Biochim Biophys Acta Mol Cell Res. 1866:124–143. 2019. View Article : Google Scholar : PubMed/NCBI | |
Patterson KI, Brummer T, O'Brien PM and Daly RJ: Dual-specificity phosphatases: Critical regulators with diverse cellular targets. Biochem J. 418:475–489. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Wang ZX, Zhao Y, Brautigan DL and Zhang ZY: The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases. J Biol Chem. 277:31818–31825. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yao Z and Seger R: The molecular mechanism of MAPK/ERK inactivation. Curr Genomics. 5:385–393. 2004. View Article : Google Scholar | |
Kolch W: Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 6:827–837. 2005. View Article : Google Scholar : PubMed/NCBI | |
Morrison DK and Davis RJ: Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol. 19:91–118. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chuderland D and Seger R: Protein-protein interactions in the regulation of the extracellular signal-regulated kinase. Mol Biotechnol. 29:57–74. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shaul YD and Seger R: The MEK/ERK cascade: From signaling specificity to diverse functions. Biochim Biophys Acta. 1773:1213–1226. 2007. View Article : Google Scholar : PubMed/NCBI | |
Marshall CJ: Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell. 80:179–185. 1995. View Article : Google Scholar : PubMed/NCBI | |
Wainstein E and Seger R: The dynamic subcellular localization of ERK: Mechanisms of translocation and role in various organelles. Curr Opin Cell Biol. 39:15–20. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yao Z and Seger R: The ERK signaling cascade-views from different subcellular compartments. Biofactors. 35:407–416. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Lee SG, Chung JY, Kim YJ, Park JE, Koh H, Han MS, Park YC, Yoo YH and Kim JM: Ellipticine induces apoptosis in human endometrial cancer cells: The potential involvement of reactive oxygen species and mitogen-activated protein kinases. Toxicology. 289:91–102. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshizumi M, Kyotani Y, Zhao J, Nagayama K, Ito S, Tsuji Y and Ozawa K: Role of big mitogen-activated protein kinase 1 (BMK1)/extracellular signal-regulated kinase 5 (ERK5) in the pathogenesis and progression of atherosclerosis. J Pharmacol Sci. 120:259–263. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bogoyevitch MA, Ngoei KR, Zhao TT, Yeap YY and Ng DC: c-Jun N-terminal kinase (JNK) signaling: Recent advances and challenges. Biochim Biophys Acta. 1804:463–475. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wagner EF and Nebreda AR: Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 9:537–549. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gupta J and Nebreda AR: Roles of p38α mitogen-activated protein kinase in mouse models of inflammatory diseases and cancer. FEBS J. 282:1841–1857. 2015. View Article : Google Scholar : PubMed/NCBI | |
García-Gómez R, Bustelo XR and Crespo P: Protein-protein interactions: Emerging oncotargets in the RAS-ERK pathway. Trends Cancer. 4:616–633. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F and Hong DS: Targeting TRK family proteins in cancer. Pharmacol Ther. 173:58–66. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maik-Rachline G, Hacohen-Lev-Ran A and Seger R: Nuclear ERK: Mechanism of translocation, substrates, and role in cancer. Int J Mol Sci. 20(pii): E11942019. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, et al: Oncogenic signaling pathways in the cancer genome atlas. Cell. 173:321–337.e10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Holderfield M, Deuker MM, McCormick F and McMahon M: Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer. 14:455–467. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kyriakis JM and Avruch J: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 81:807–869. 2001. View Article : Google Scholar : PubMed/NCBI | |
Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E and Cobb MH: Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell. 93:605–615. 1998. View Article : Google Scholar : PubMed/NCBI | |
Chang L and Karin M: Mammalian MAP kinase signalling cascades. Nature. 410:37–40. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yang S and Liu G: Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol Lett. 13:1041–1047. 2017. View Article : Google Scholar : PubMed/NCBI | |
Anjum R and Blenis J: The RSK family of kinases: Emerging roles in cellular signalling. Nat Rev Mol Cell Biol. 9:747–758. 2008. View Article : Google Scholar : PubMed/NCBI | |
Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH and Yancopoulos GD: ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 65:663–675. 1991. View Article : Google Scholar : PubMed/NCBI | |
Morimoto H, Kondoh K, Nishimoto S, Terasawa K and Nishida E: Activation of a C-terminal transcriptional activation domain of ERK5 by autophosphorylation. J Biol Chem. 282:35449–35456. 2007. View Article : Google Scholar : PubMed/NCBI | |
Buschbeck M and Ullrich A: The unique C-terminal tail of the mitogen-activated protein kinase ERK5 regulates its activation and nuclear shuttling. J Biol Chem. 280:2659–2667. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nishimoto S and Nishida E: MAPK signalling: ERK5 versus ERK1/2. EMBO Rep. 7:782–786. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kondoh K, Terasawa K, Morimoto H and Nishida E: Regulation of nuclear translocation of extracellular signal-regulated kinase 5 by active nuclear import and export mechanisms. Mol Cell Biol. 26:1679–1690. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yan C, Luo H, Lee JD, Abe J and Berk BC: Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains. J Biol Chem. 276:10870–10878. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Der CJ and Cox AD: The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol. 58:60–69. 2016. View Article : Google Scholar : PubMed/NCBI | |
Muñoz-Maldonado C, Zimmer Y and Medová M: A comparative analysis of individual RAS mutations in cancer biology. Front Oncol. 9:10882019. View Article : Google Scholar : PubMed/NCBI | |
Dohlman HG and Campbell SL: Regulation of large and small G proteins by ubiquitination. J Biol Chem. 294:18613–18623. 2019. View Article : Google Scholar : PubMed/NCBI | |
Terrell EM and Morrison DK: Ras-mediated activation of the raf family kinases. Cold Spring Harb Perspect Med. 9(pii): a0337462019. View Article : Google Scholar : PubMed/NCBI | |
Bandaru P, Kondo Y and Kuriyan J: The interdependent activation of son-of-sevenless and ras. Cold Spring Harb Perspect Med. 9(pii): a0315342019. View Article : Google Scholar : PubMed/NCBI | |
Simanshu DK, Nissley DV and McCormick F: RAS proteins and their regulators in human disease. Cell. 170:17–33. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rukhlenko OS, Khorsand F, Krstic A, Rozanc J, Alexopoulos LG, Rauch N, Erickson KE, Hlavacek WS, Posner RG, Gómez-Coca S, et al: Dissecting RAF inhibitor resistance by structure-based modeling reveals ways to overcome oncogenic RAS signaling. Cell Syst. 7:161–179.e14. 2018. View Article : Google Scholar : PubMed/NCBI | |
Roskoski R Jr: RAF protein-serine/threonine kinases: Structure and regulation. Biochem Biophys Res Commun. 399:313–317. 2010. View Article : Google Scholar : PubMed/NCBI | |
Roskoski R Jr: Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacol Res. 142:151–168. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stokoe D and McCormick F: Activation of c-Raf-1 by Ras and Src through different mechanisms: Activation in vivo and in vitro. EMBO J. 16:2384–2396. 1997. View Article : Google Scholar : PubMed/NCBI | |
Vandamme D, Herrero A, Al-Mulla F and Kolch W: Regulation of the MAPK pathway by raf kinase inhibitory protein. Crit Rev Oncog. 19:405–415. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ding Q, Wang Q and Evers BM: Alterations of MAPK activities associated with intestinal cell differentiation. Biochem Biophys Res Commun. 284:282–288. 2001. View Article : Google Scholar : PubMed/NCBI | |
Colombino M, Capone M, Lissia A, Cossu A, Rubino C, De Giorgi V, Massi D, Fonsatti E, Staibano S, Nappi O, et al: BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol. 30:2522–2529. 2012. View Article : Google Scholar : PubMed/NCBI | |
Edlundh-Rose E, Egyházi S, Omholt K, Månsson-Brahme E, Platz A, Hansson J and Lundeberg J: NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: A study based on mutation screening by pyrosequencing. Melanoma Res. 16:471–478. 2006. View Article : Google Scholar : PubMed/NCBI | |
Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, Ohtsuru A, Saenko VA, Kanematsu T and Yamashita S: Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 88:4393–4397. 2003. View Article : Google Scholar : PubMed/NCBI | |
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al: Mutations of the BRAF gene in human cancer. Nat. 417:949–954. 2002. View Article : Google Scholar | |
Murugan AK, Dong J, Xie J and Xing M: MEK1 mutations, but not ERK2 mutations, occur in melanomas and colon carcinomas, but none in thyroid carcinomas. Cell Cycle. 8:2122–2124. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, Harshman K, Guipponi M, Bukach O, Zoete V, et al: Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet. 44:133–139. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Boerner SA, Winkler JD and LoRusso PM: Clinical experience of MEK inhibitors in cancer therapy. Biochim Biophys Acta. 1773:1248–1255. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jänne PA, van den Heuvel MM, Barlesi F, Cobo M, Mazieres J, Crinò L, Orlov S, Blackhall F, Wolf J, Garrido P, et al: Selumetinib plus docetaxel compared with docetaxel alone and progression-free survival in patients with KRAS-mutant advanced non-small cell lung cancer: The SELECT-1 randomized clinical trial. JAMA. 317:1844–1853. 2017. View Article : Google Scholar : PubMed/NCBI | |
Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, Lee J, Jung YJ, Kim JO, Shin JY, et al: The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 22:2109–2119. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cardarella S, Ogino A, Nishino M, Butaney M, Shen J, Lydon C, Yeap BY, Sholl LM, Johnson BE and Jänne PA: Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin Cancer Res. 19:4532–4540. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tol J, Nagtegaal ID and Punt CJ: BRAF mutation in metastatic colorectal cancer. N Engl J Med. 361:98–99. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jones JC, Renfro LA, Al-Shamsi HO, Schrock AB, Rankin A, Zhang BY, Kasi PM, Voss JS, Leal AD, Sun J, et al: Non-V600 BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol. 35:2624–2630. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sieben NL, Macropoulos P, Roemen GM, Kolkman-Uljee SM, Jan Fleuren G, Houmadi R, Diss T, Warren B, Al Adnani M, De Goeij AP, et al: In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours. J Pathol. 202:336–340. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bell DA: Origins and molecular pathology of ovarian cancer. Mod Pathol. 18 (Suppl 2):S19–S32. 2005. View Article : Google Scholar : PubMed/NCBI | |
Singer G, Oldt R III, Cohen Y, Wang BG, Sidransky D, Kurman RJ and Shih IeM: Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst. 95:484–486. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bansal M, Gandhi M, Ferris RL, Nikiforova MN, Yip L, Carty SE and Nikiforov YE: Molecular and histopathologic characteristics of multifocal papillary thyroid carcinoma. Am J Surg Pathol. 37:1586–1591. 2013. View Article : Google Scholar : PubMed/NCBI | |
Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, Ladanyi M and Riely GJ: Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol. 29:2046–2051. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, Yip L, Mian C, Vianello F, Tuttle RM, et al: Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 309:1493–1501. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, Pucciarini A, Bigerna B, Pacini R, Wells VA, et al: BRAF mutations in hairy-cell leukemia. N Engl J Med. 364:2305–2315. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xi L, Arons E, Navarro W, Calvo KR, Stetler-Stevenson M, Raffeld M and Kreitman RJ: Both variant and IGHV4-34-expressing hairy cell leukemia lack the BRAF V600E mutation. Blood. 119:3330–3332. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chao TH, Hayashi M, Tapping RI, Kato Y and Lee JD: MEKK3 directly regulates MEK5 activity as part of the big mitogen-activated protein kinase 1 (BMK1) signaling pathway. J Biol Chem. 274:36035–36038. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Yu L, Zhang D, Huang Q, Spencer D and Su B: Dimerization through the catalytic domain is essential for MEKK2 activation. J Biol Chem. 280:13477–13482. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Kesavan K, Schaefer BC, Garrington TP, Ware M, Johnson NL, Gelfand EW and Johnson GL: MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5-BMK1/ERK5 pathway. J Biol Chem. 276:5093–5100. 2001. View Article : Google Scholar : PubMed/NCBI | |
Manning G, Whyte DB, Martinez R, Hunter T and Sudarsanam S: The protein kinase complement of the human genome. Science. 298:1912–1934. 2002. View Article : Google Scholar : PubMed/NCBI | |
Muta Y, Matsuda M and Imajo M: Divergent dynamics and functions of ERK MAP kinase signaling in development, homeostasis and cancer: Lessons from fluorescent bioimaging. Cancers (Basel). 11(pii): E5132019. View Article : Google Scholar : PubMed/NCBI | |
Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D and Zhang XF: Ras activation of the Raf kinase: Tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res. 56:127–155. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lawrence MC, Jivan A, Shao C, Duan L, Goad D, Zaganjor E, Osborne J, McGlynn K, Stippec S, Earnest S, et al: The roles of MAPKs in disease. Cell Res. 18:436–442. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shin M, Franks CE and Hsu KL: Isoform-selective activity-based profiling of ERK signaling. Chem Sci. 9:2419–2431. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sanchez JN, Wang T and Cohen MS: BRAF and MEK inhibitors: Use and resistance in BRAF-mutated cancers. Drugs. 78:549–566. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kolch W: Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 351:289–305. 2000. View Article : Google Scholar : PubMed/NCBI | |
Schulze A, Lehmann K, Jefferies HB, McMahon M and Downward J: Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev. 15:981–994. 2001. View Article : Google Scholar : PubMed/NCBI | |
Deming D, Geiger P, Chen H, Vaccaro A, Kunnimalaiyaan M and Holen K: ZM336372, a Raf-1 activator, causes suppression of proliferation in a human hepatocellular carcinoma cell line. J Gastrointest Surg. 12:852–857. 2008. View Article : Google Scholar : PubMed/NCBI | |
O'Neill E and Kolch W: Conferring specificity on the ubiquitous Raf/MEK signalling pathway. Br J Cancer. 90:283–288. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rubinfeld H and Seger R: The ERK cascade: A prototype of MAPK signaling. Mol Biotechnol. 31:151–174. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bhartiya D and Singh J: FSH-FSHR3-stem cells in ovary surface epithelium: Basis for adult ovarian biology, failure, aging, and cancer. Reproduction. 149:R35–E48. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bang YJ, Kwon JH, Kang SH, Kim JW and Yang YC: Increased MAPK activity and MKP-1 overexpression in human gastric adenocarcinoma. Biochem Biophys Res Commun. 250:43–47. 1998. View Article : Google Scholar : PubMed/NCBI | |
Rao A and Herr DR: G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells. Biochim Biophys Acta Mol Cell Res. 1864:1318–1327. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang Q, Wu J, Zheng F, Hann SS and Chen Y: Emodin increases expression of insulin-like growth factor binding protein 1 through activation of MEK/ERK/AMPKα and interaction of PPARγ and Sp1 in lung cancer. Cell Physiol Biochem. 41:339–357. 2017. View Article : Google Scholar : PubMed/NCBI | |
Denkert C, Schmitt WD, Berger S, Reles A, Pest S, Siegert A, Lichtenegger W, Dietel M and Hauptmann S: Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. Int J Cancer. 102:507–513. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hong L, Wang Y, Chen W and Yang S: MicroRNA-508 suppresses epithelial-mesenchymal transition, migration, and invasion of ovarian cancer cells through the MAPK1/ERK signaling pathway. J Cell Biochem. 119:7431–7440. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Lee JW, Soung YH, Kim SY, Nam SW, Park WS, Kim SH, Yoo NJ and Lee JY: Colorectal tumors frequently express phosphorylated mitogen-activated protein kinase. APMIS. 112:233–238. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, Gowan RC, Tecle H, Barrett SD, Bridges A, Przybranowski S, et al: Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 5:810–816. 1999. View Article : Google Scholar : PubMed/NCBI | |
Mader S and Pantel K: Liquid biopsy: Current status and future perspectives. Oncol Res Treat. 40:404–408. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baek JH, Jang JE, Kang CM, Chung HY, Kim ND and Kim KW: Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene. 19:4621–4631. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lefloch R, Pouysségur J and Lenormand P: Total ERK1/2 activity regulates cell proliferation. Cell cycle. 8:705–711. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gauthier R, Harnois C, Drolet JF, Reed JC, Vézina A and Vachon PH: Human intestinal epithelial cell survival: Differentiation state-specific control mechanisms. Am J Physiol Cell Physiol. 280:C1540–C1554. 2001. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Zou Y, Lin L, Ma X and Zheng R: miR-101 regulates the cell proliferation and apoptosis in diffuse large B-cell lymphoma by targeting MEK1 via regulation of the ERK/MAPK signaling pathway. Oncol Rep. 41:377–386. 2019.PubMed/NCBI | |
Shah S, Brock EJ, Ji K and Mattingly RR: Ras and Rap1: A tale of two GTPases. Semin Cancer Biol. 54:29–39. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maemura K, Shiraishi N, Sakagami K, Kawakami K, Inoue T, Murano M, Watanabe M and Otsuki Y: Proliferative effects of gamma-aminobutyric acid on the gastric cancer cell line are associated with extracellular signal-regulated kinase 1/2 activation. J Gastroenterol Hepatol. 24:688–696. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kang SK, Tai CJ, Cheng KW and Leung PC: Gonadotropin-releasing hormone activates mitogen-activated protein kinase in human ovarian and placental cells. Mol Cell Endocrinol. 170:143–151. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Xu Y and Li L: SPARCL1 suppresses the proliferation and migration of human ovarian cancer cells via the MEK/ERK signaling. Exp Ther Med. 16:3195–3201. 2018.PubMed/NCBI | |
Sulzmaier FJ and Ramos JW: RSK isoforms in cancer cell invasion and metastasis. Cancer Res. 73:6099–6105. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sung HY, Yang SD, Ju W and Ahn JH: Aberrant epigenetic regulation of GABRP associates with aggressive phenotype of ovarian cancer. Exp Mol Med. 49:e3352017. View Article : Google Scholar : PubMed/NCBI | |
Liu SB, Lin XP, Xu Y, Shen ZF and Pan WW: DAXX promotes ovarian cancer ascites cell proliferation and migration by activating the ERK signaling pathway. J Ovarian Res. 11:902018. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Ye W, Wu J, Liu L, Yang L, Gao L, Chen B, Zhang F, Yang H and Li Y: Sp1-CD147 positive feedback loop promotes the invasion ability of ovarian cancer. Oncol Rep. 34:67–76. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang LQ, Yang SQ, Wang Y, Fang Q, Chen XJ, Lu HS and Zhao LP: Long noncoding RNA MIR4697HG promotes cell growth and metastasis in human ovarian cancer. Anal Cell Pathol (Amst). 2017:82678632017.PubMed/NCBI | |
Gialeli C, Theocharis AD and Karamanos NK: Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278:16–27. 2011. View Article : Google Scholar : PubMed/NCBI | |
Maeda-Yamamoto M, Suzuki N, Sawai Y, Miyase T, Sano M, Hashimoto-Ohta A and Isemura M: Association of suppression of extracellular signal-regulated kinase phosphorylation by epigallocatechin gallate with the reduction of matrix metalloproteinase activities in human fibrosarcoma HT1080 cells. J Agric Food Chem. 51:1858–1863. 2003. View Article : Google Scholar : PubMed/NCBI | |
Simon C, Hicks MJ, Nemechek AJ, Mehta R, O'Malley BW Jr, Goepfert H, Flaitz CM and Boyd D: PD 098059, an inhibitor of ERK1 activation, attenuates the in vivo invasiveness of head and neck squamous cell carcinoma. Br J Cancer. 80:1412–1419. 1999. View Article : Google Scholar : PubMed/NCBI | |
Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, et al: A comprehensive review on MAPK: A promising therapeutic target in cancer. Cancers (Basel). 11(pii): E16182019. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Wang Y, Yang J, Zhang W, Meng K, Sun Y, Li Y and He QY: RNF128 promotes invasion and metastasis via the EGFR/MAPK/MMP-2 pathway in esophageal squamous cell carcinoma. Cancers (Basel). 11(pii): E8402019. View Article : Google Scholar : PubMed/NCBI | |
Chang MC, Chen CA, Chen PJ, Chiang YC, Chen YL, Mao TL, Lin HW, Lin Chiang WH and Cheng WF: Mesothelin enhances invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways. Biochem J. 442:293–302. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hohmann T and Dehghani F: The cytoskeleton-A complex interacting meshwork. Cells. 8(pii): E3622019. View Article : Google Scholar : PubMed/NCBI | |
Bray D: Cell movements, 2nd editionn. Garland Publishing; New York: pp. 792001 | |
Yamamoto T, Kozawa O, Tanabe K, Akamatsu S, Matsuno H, Dohi S and Uematsu T: Involvement of p38 MAP kinase in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle cells. J Cell Biochem. 82:591–598. 2001. View Article : Google Scholar : PubMed/NCBI | |
Krishna Priya S, Nagare RP, Sneha VS, Sidhanth C, Bindhya S, Manasa P and Ganesan TS: Tumour angiogenesis-Origin of blood vessels. Int J Cancer. 139:729–735. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heikenwalder M and Lorentzen A: The role of polarisation of circulating tumour cells in cancer metastasis. Cell Mol Life Sci. 76:3765–3781. 2019. View Article : Google Scholar : PubMed/NCBI | |
Javan MR, Khosrojerdi A and Moazzeni SM: New insights into implementation of mesenchymal stem cells in cancer therapy: Prospects for anti-angiogenesis treatment. Front Oncol. 9:8402019. View Article : Google Scholar : PubMed/NCBI | |
Song M and Finley SD: Mechanistic insight into activation of MAPK signaling by pro-angiogenic factors. BMC Syst Biol. 12:1452018. View Article : Google Scholar : PubMed/NCBI | |
Su CM, Su YH, Chiu CF, Chang YW, Hong CC, Yu YH, Ho YS, Wu CH, Yen CS and Su JL: Vascular endothelial growth factor-C upregulates cortactin and promotes metastasis of esophageal squamous cell carcinoma. Ann Surg Oncol. 21 (Suppl 4):S767–S775. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharya R, Ray Chaudhuri S and Roy SS: FGF9-induced ovarian cancer cell invasion involves VEGF-A/VEGFR2 augmentation by virtue of ETS1 upregulation and metabolic reprogramming. J Cell Biochem. 119:8174–8189. 2018. View Article : Google Scholar : PubMed/NCBI | |
Soula-Rothhut M, Coissard C, Sartelet H, Boudot C, Bellon G, Martiny L and Rothhut B: The tumor suppressor PTEN inhibits EGF-induced TSP-1 and TIMP-1 expression in FTC-133 thyroid carcinoma cells. Exp Cell Res. 304:187–201. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang YH, Wei W, Xu H, Wang YY and Wu WX: Inducing effects of hepatocyte growth factor on the expression of vascular endothelial growth factor in human colorectal carcinoma cells through MEK and PI3K signaling pathways. Chin Med J (Engl). 120:743–748. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bian CX, Shi Z, Meng Q, Jiang Y, Liu LZ and Jiang BH: P70S6K 1 regulation of angiogenesis through VEGF and HIF-1alpha expression. Biochem Biophys Res Commun. 398:395–399. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ping H, Guo L, Xi J and Wang D: Angiotensin II type 2 receptor-interacting protein 3a inhibits ovarian carcinoma metastasis via the extracellular HMGA2-mediated ERK/EMT pathway. Tumor Biol. 39:10104283177133892017. |