1
|
Mohammadi P, di Iulio J, Muñoz M, Martinez
R, Bartha I, Cavassini M, Thorball C, Fellay J, Beerenwinkel N,
Ciuffi A, et al: Dynamics of HIV latency and reactivation in a
primary CD4+ T cell model. PLoS Pathog. 10(e1004156)2014.PubMed/NCBI View Article : Google Scholar
|
2
|
Mbonye U and Karn J: Transcriptional
control of HIV latency: Cellular signaling pathways, epigenetics,
happenstance and the hope for a cure. Virology. 454-455:328–339.
2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Maldarelli F, Wu X, Su L, Simonetti FR,
Shao W, Hill S, Spindler J, Ferris AL, Mellors JW, Kearney MF, et
al: HIV latency. Specific HIV integration sites are linked to
clonal expansion and persistence of infected cells. Science.
345:179–183. 2014.PubMed/NCBI View Article : Google Scholar
|
4
|
Van Lint C, Bouchat S and Marcello A:
HIV-1 transcription and latency: An update. Retrovirology.
10(67)2013.PubMed/NCBI View Article : Google Scholar
|
5
|
Loyola A and Almouzni G: Histone
chaperones, a supporting role in the limelight. Biochim Biophys
Acta. 1677:3–11. 2004.PubMed/NCBI View Article : Google Scholar
|
6
|
Allen HF, Wade PA and Kutateladze TG: The
NuRD architecture. Cell Mol Life Sci. 70:3513–3524. 2013.PubMed/NCBI View Article : Google Scholar
|
7
|
Zhang W, Tyl M, Ward R, Sobott F, Maman J,
Murthy AS, Watson AA, Fedorov O, Bowman A, Owen-Hughes T, et al:
Structural plasticity of histones H3-H4 facilitates their
allosteric exchange between RbAp48 and ASF1. Nat Struct Mol Biol.
20:29–35. 2013.PubMed/NCBI View Article : Google Scholar
|
8
|
O'Connor MD, Wederell E, Robertson G,
Delaney A, Morozova O, Poon SSS, Yap D, Fee J, Zhao Y, McDonald H,
et al: Retinoblastoma-binding proteins 4 and 9 are important for
human pluripotent stem cell maintenance. Exp Hematol. 39:866–79.e1.
2011.PubMed/NCBI View Article : Google Scholar
|
9
|
Creekmore AL, Walt KA, Schultz-Norton JR,
Ziegler YS, McLeod IX, Yates JR and Nardulli AM: The role of
retinoblastoma-associated proteins 46 and 48 in estrogen receptor α
mediated gene expression. Mol Cell Endocrinol. 291:79–86.
2008.PubMed/NCBI View Article : Google Scholar
|
10
|
Ishimaru N, Arakaki R, Yoshida S, Yamada
A, Noji S and Hayashi Y: Expression of the retinoblastoma protein
RbAp48 in exocrine glands leads to Sjögren's syndrome-like
autoimmune exocrinopathy. J Exp Med. 205:2915–2927. 2008.PubMed/NCBI View Article : Google Scholar
|
11
|
Yang J, Yang Z, Lv H, Lou Y, Wang J and Wu
N: Bridging HIV-1 cellular latency and clinical long-term
non-progressor: An interactomic view. PLoS One.
8(e55791)2013.PubMed/NCBI View Article : Google Scholar
|
12
|
O'Doherty U, Swiggard WJ and Malim MH:
Human immunodeficiency virus type 1 spinoculation enhances
infection through virus binding. J Virol. 74:10074–10080.
2000.PubMed/NCBI View Article : Google Scholar
|
13
|
Casabianca A, Gori C, Orlandi C, Forbici
F, Federico Perno C and Magnani M: Fast and sensitive quantitative
detection of HIV DNA in whole blood leucocytes by SYBR green I
real-time PCR assay. Mol Cell Probes. 21:368–378. 2007.PubMed/NCBI View Article : Google Scholar
|
14
|
Jablonski JA and Caputi M: Role of
cellular RNA processing factors in human immunodeficiency virus
type 1 mRNA metabolism, replication, and infectivity. J Virol.
83:981–992. 2009.PubMed/NCBI View Article : Google Scholar
|
15
|
Yedavalli VSRK and Jeang KT:
Trimethylguanosine capping selectively promotes expression of
Rev-dependent HIV-1 RNAs. Proc Natl Acad Sci USA. 107:14787–14792.
2010.PubMed/NCBI View Article : Google Scholar
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCT method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar
|
17
|
Wang XM, Nadeau PE, Lin S, Abbott JR and
Mergia A: Caveolin 1 inhibits HIV replication by transcriptional
repression mediated through NF-κB. J Virol. 85:5483–5493.
2011.PubMed/NCBI View Article : Google Scholar
|
18
|
Vemula SV, Veerasamy R, Ragupathy V,
Biswas S, Devadas K and Hewlett I: HIV-1 induced nuclear factor IB
(NF-IB) expression negatively regulates HIV-1 replication through
interaction with the long terminal repeat region. Viruses.
7:543–558. 2015.PubMed/NCBI View
Article : Google Scholar
|
19
|
Kumar A, Darcis G, Van Lint C and Herbein
G: Epigenetic control of HIV-1 post integration latency:
Implications for therapy. Clin Epigenetics. 7(103)2015.PubMed/NCBI View Article : Google Scholar
|
20
|
Coull JJ, Romerio F, Sun JM, Volker JL,
Galvin KM, Davie JR, Shi Y, Hansen U and Margolis DM: The human
factors YY1 and LSF repress the human immunodeficiency virus type 1
long terminal repeat via recruitment of histone deacetylase 1. J
Virol. 74:6790–6799. 2000.PubMed/NCBI View Article : Google Scholar
|
21
|
Sreenath K, Pavithra L, Singh S, Sinha S,
Dash PK, Siddappa NB, Ranga U, Mitra D and Chattopadhyay S: Nuclear
matrix protein SMAR1 represses HIV-1 LTR mediated transcription
through chromatin remodeling. Virology. 400:76–85. 2010.PubMed/NCBI View Article : Google Scholar
|
22
|
Nishitsuji H, Abe M, Sawada R and Takaku
H: ZBRK1 represses HIV-1 LTR-mediated transcription. FEBS Lett.
586:3562–3568. 2012.PubMed/NCBI View Article : Google Scholar
|
23
|
Rom S, Reichenbach NL, Dykstra H and
Persidsky Y: The dual action of poly(ADP-ribose) polymerase -1
(PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and
diminution in Rho GTPase activity. Front Microbiol.
6(878)2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Williams SA, Chen LF, Kwon H, Ruiz-Jarabo
CM, Verdin E and Greene WC: NF-kappaB p50 promotes HIV latency
through HDAC recruitment and repression of transcriptional
initiation. EMBO J. 25:139–149. 2006.PubMed/NCBI View Article : Google Scholar
|