T lymphocytes in IgA nephropathy (Review)
- Authors:
- Yuyan Tang
- Haidong He
- Pin Hu
- Xudong Xu
-
Affiliations: Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China - Published online on: April 22, 2020 https://doi.org/10.3892/etm.2020.8673
- Pages: 186-194
-
Copyright: © Tang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ohyama Y, Yamaguchi H, Nakajima K, Mizuno T, Fukamachi Y, Yokoi Y, Tsuboi N, Inaguma D, Hasegawa M, Renfrow MB, et al: Analysis of O-glycoforms of the IgA1 hinge region by sequential deglycosylation. Sci Rep. 10(671)2020.PubMed/NCBI View Article : Google Scholar | |
Kiryluk K, Li Y, Moldoveanu Z, Suzuki H, Reily C, Hou P, Xie J, Mladkova N, Prakash S, Fischman C, et al: GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 13(e1006609)2017.PubMed/NCBI View Article : Google Scholar | |
Wang X, Li T, Si R, Chen J, Qu Z and Jiang Y: Increased frequency of PD-1hiCXCR5- T cells and B cells in patients with newly diagnosed IgA nephropathy. Sci Rep. 10(492)2020.PubMed/NCBI View Article : Google Scholar | |
Xing Y, Li L, Zhang Y, Wang F, He D, Liu Y, Jia J, Yan T and Lin S: C1GALT1 expression is associated with galactosylation of IgA1 in peripheral B lymphocyte in immunoglobulin a nephropathy. BMC Nephrol. 21(18)2020.PubMed/NCBI View Article : Google Scholar | |
Yeo SC, Cheung CK and Barratt J: New insights into the pathogenesis of IgA nephropathy. Pediatr Nephrol. 33:763–777. 2018.PubMed/NCBI View Article : Google Scholar | |
Perše M and Večerić-Haler Ž: The role of IgA in the pathogenesis of IgA nephropathy. Int J Mol Sci. 20(E6199)2019.PubMed/NCBI View Article : Google Scholar | |
Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, Raska M, Renfrow MB, Julian BA and Novak J: The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol. 7(117)2016.PubMed/NCBI View Article : Google Scholar | |
Hu S, Bao H, Xu X, Zhou X, Qin W, Zeng C and Liu Z: Increased miR-374b promotes cell proliferation and the production of aberrant glycosylated IgA1 in B cells of IgA nephropathy. FEBS Lett. 589:4019–4025. 2015.PubMed/NCBI View Article : Google Scholar | |
Sallustio F, Curci C, Di Leo V, Gallone A, Pesce F and Gesualdo L: A new vision of IgA nephropathy: The missing link. Int J Mol Sci. 21(E189)2019.PubMed/NCBI View Article : Google Scholar | |
Ito S, Misaki T, Naka S, Wato K, Nagasawa Y, Nomura R, Otsugu M, Matsumoto-Nakano M, Nakano K, Kumagai H and Oshima N: Specific strains of Streptococcus mutans, a pathogen of dental caries, in the tonsils, are associated with IgA nephropathy. Sci Rep. 9(20130)2019.PubMed/NCBI View Article : Google Scholar | |
Makita Y, Suzuki H, Kano T, Takahata A, Julian BA, Novak J and Suzuki Y: TLR9 activation induces aberrant IgA glycosylation via APRIL- and IL-6-mediated pathways in IgA nephropathy. Kidney Int. 97:340–349. 2020.PubMed/NCBI View Article : Google Scholar | |
Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z, et al: Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 119:1668–1677. 2009.PubMed/NCBI View Article : Google Scholar | |
Xu BY, Meng SJ, Shi SF, Liu LJ, Lv JC, Zhu L and Zhang H: MicroRNA-21-5p participates in IgA nephropathy by driving T helper cell polarization. J Nephrol: Dec 20, 2019 doi.org/10.1007/s40620-019-00682-3 (Epub ahead of print). | |
Serino G, Sallustio F, Cox SN, Pesce F and Schena FP: Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J Am Soc Nephrol. 23:814–824. 2012.PubMed/NCBI View Article : Google Scholar | |
Batra A, Smith AC, Feehally J and Barratt J: T-cell homing receptor expression in IgA nephropathy. Nephrol Dial Transplant. 22:2540–2548. 2007.PubMed/NCBI View Article : Google Scholar | |
Enya T, Miyazawa T, Miyazaki K, Oshima R, Morimoto Y, Okada M, Takemura T and Sugimoto K: Pathologic tonsillar findings similar to IgA nephropathy and the role of tonsillectomy in a patient with nephrotic syndrome. BMC Nephrol. 20(381)2019.PubMed/NCBI View Article : Google Scholar | |
Meng H, Ohtake H, Ishida A, Ohta N, Kakehata S and Yamakawa M: IgA production and tonsillar focal infection in IgA nephropathy. J Clin Exp Hematop. 52:161–170. 2012.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Liu K, Chen Y, Gong Y and Liang Y: Indoleamine 2,3-dioxygenase (IDO) regulates Th17/Treg immunity in experimental IgA nephropathy. Folia Biol (Praha). 65:101–108. 2019.PubMed/NCBI | |
Yamada K, Kobayashi N, Ikeda T, Suzuki Y, Tsuge T, Horikoshi S, Emancipator SN and Tomino Y: Down-regulation of core 1 beta1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant. 25:3890–3897. 2010.PubMed/NCBI View Article : Google Scholar | |
Suzuki H, Suzuki Y, Aizawa M, Yamanaka T, Kihara M, Pang H, Horikoshi S and Tomino Y: Th1 polarization in murine IgA nephropathy directed by bone marrow-derived cells. Kidney Int. 72:319–327. 2007.PubMed/NCBI View Article : Google Scholar | |
Meng T, Li X, Ao X, Zhong Y, Tang R, Peng W, Yang J, Zou M and Zhou Q: Hemolytic Streptococcus may exacerbate kidney damage in IgA nephropathy through CCL20 response to the effect of Th17 cells. PLoS One. 9(e108723)2014.PubMed/NCBI View Article : Google Scholar | |
Huang H, Sun W, Liang Y, Peng Y, Long XD, Liu Z, Wen X, Jia M, Tian R, Bai C and Li C: CD4 (+)CD 25 (+)Treg cells and IgA nephropathy patients with tonsillectomy: A clinical and pathological study. Int Urol Nephrol. 46:2361–2369. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhang L, Wang Y, Shi X, Zou H and Jiang Y: A higher frequency of CD4+CXCR5+ T follicular helper cells in patients with newly diagnosed IgA nephropathy. Immunol Lett. 158:101–108. 2014.PubMed/NCBI View Article : Google Scholar | |
Otaka R, Takahara M, Ueda S, Nagato T, Kishibe K, Nomura K, Katada A, Hayashi T and Harabuchi Y: Up-regulation of CX3CR1 on tonsillar CD8-positive cells in patients with IgA nephropathy. Hum Immunol. 78:375–383. 2017.PubMed/NCBI View Article : Google Scholar | |
Chen X, Tang Y, Zhang Y, Zhuo M, Tang Z, Yu Y and Zang G: Tapasin modification on the intracellular epitope HBcAg18-27 enhances HBV-specific CTL immune response and inhibits hepatitis B virus replication in vivo. Lab Invest. 94:478–490. 2014.PubMed/NCBI View Article : Google Scholar | |
Wu YJ, Song YN, Geng XR, Ma F, Mo LH, Zhang XW, Liu DB, Liu ZG and Yang PC: Soluble CD83 alleviates experimental allergic rhinitis through modulating antigen-specific Th2 cell property. Int J Biol Sci. 16:216–227. 2020.PubMed/NCBI View Article : Google Scholar | |
Tortajada A, Gutierrez E, Pickering MC, Praga Terente M and Medjeral-Thomas N: The role of complement in IgA nephropathy. Mol Immunol. 114:123–132. 2019.PubMed/NCBI View Article : Google Scholar | |
Shao F, Zheng P, Yu D, Zhou Z and Jia L: Follicular helper T cells in type 1 diabetes. FASEB J. 34:30–40. 2020.PubMed/NCBI View Article : Google Scholar | |
Gao Y, Jin H, Nan D, Yu W, Zhang J, Yang Y, Hou R, Qin R, Hao H, Sun Y and Tian W: The role of T follicular helper cells and T follicular regulatory cells in the pathogenesis of autoimmune hemolytic anemia. Sci Rep. 9(19767)2019.PubMed/NCBI View Article : Google Scholar | |
Oestreich KJ and Weinmann AS: Transcriptional mechanisms that regulate T helper 1 cell differentiation. Curr Opin Immunol. 24:191–195. 2012.PubMed/NCBI View Article : Google Scholar | |
Wang Q, Li J, Yu TS, Liu Y, Li K, Liu S, Liu Y, Feng Q, Zhang L, Li GS, et al: Disrupted balance of CD4+ T-cell subsets in bone marrow of patients with primary immune thrombocytopenia. Int J Biol Sci. 15:2798–2814. 2019.PubMed/NCBI View Article : Google Scholar | |
Magen A, Nie J, Ciucci T, Tamoutounour S, Zhao Y, Mehta M, Tran B, McGavern DB, Hannenhalli S and Bosselut R: Single-cell profiling defines transcriptomic signatures specific to tumor-reactive versus virus-responsive CD4+ T cells. Cell Rep. 29:3019–3032.e6. 2019.PubMed/NCBI View Article : Google Scholar | |
Tang Y, Chen X, Zhang Y, Tang Z, Zhuo M, Li D, Wang P, Zang G and Yu Y: Fusion protein of tapasin and hepatitis B core antigen 18-27 enhances T helper cell type 1/2 cytokine ratio and antiviral immunity by inhibiting suppressors of cytokine signaling family members 1/3 in hepatitis B virus transgenic mice. Mol Med Rep. 9:1171–1178. 2014.PubMed/NCBI View Article : Google Scholar | |
Edwards ESJ, Bosco JJ, Aui PM, Stirling RG, Cameron PU, Chatelier J, Hore-Lacy F, O'Hehir RE and van Zelm MC: Predominantly antibody-deficient patients with non-infectious complications have reduced naive B, Treg, Th17, and Tfh17 cells. Front Immunol. 10(2593)2019.PubMed/NCBI View Article : Google Scholar | |
Shea-Donohue T, Fasano A, Smith A and Zhao A: Enteric pathogens and gut function: Role of cytokines and STATs. Gut Microbes. 1:316–324. 2010.PubMed/NCBI View Article : Google Scholar | |
Blokland SLM, van Vliet-Moret FM, Hillen MR, Pandit A, Goldschmeding R, Kruize AA, Bouma G, van Maurik A, Olek S, Hoffmueller U, et al: Epigenetically quantified immune cells in salivary glands of Sjögren's syndrome patients: A novel tool that detects robust correlations of T follicular helper cells with immunopathology. Rheumatology (Oxford). 59:335–343. 2020.PubMed/NCBI View Article : Google Scholar | |
Singer BD, King LS and D'Alessio FR: Regulatory T cells as immunotherapy. Front Immunol. 5(46)2014.PubMed/NCBI View Article : Google Scholar | |
Read KA, Powell MD and Oestreich KJ: T follicular helper cell programming by cytokine-mediated events. Immunology. 149:253–261. 2016.PubMed/NCBI View Article : Google Scholar | |
Phillips S, Chokshi S, Riva A, Evans A, Williams R and Naoumov NV: CD8(+) T cell control of hepatitis B virus replication: Direct comparison between cytolytic and noncytolytic functions. J Immunol. 184:287–295. 2010.PubMed/NCBI View Article : Google Scholar | |
Tang YY, Tang ZH, Zhang Y, Zhuo M, Zang GQ, Chen XH and Yu YS: The fusion protein of CTP-HBcAg18-27-tapasin mediates the apoptosis of CD8(+)T cells and CD8(+) T cell response in HLA-A2 transgenic mice. Hepat Mon. 14(e16161)2014.PubMed/NCBI View Article : Google Scholar | |
Krebs CF and Steinmetz OM: CD4+ T cell fate in glomerulonephritis: A tale of Th1, Th17, and novel Treg subtypes. Mediators Inflamm. 2016(5393894)2016.PubMed/NCBI View Article : Google Scholar | |
Habura I, Fiedorowicz K, Woźniak A, Idasiak-Piechocka I, Kosikowski P and Oko A: IgA nephropathy associated with coeliac disease. Cent Eur J Immunol. 44:106–108. 2019.PubMed/NCBI View Article : Google Scholar | |
Suzuki H and Suzuki Y: Murine models of human IgA nephropathy. Semin Nephrol. 38:513–520. 2018.PubMed/NCBI View Article : Google Scholar | |
Tsuruga K, Oki E, Aizawa-Yashiro T, Yoshida H, Imaizumi T and Tanaka H: Potential Th1⁄Th2 predominance in children with newly diagnosed IgA nephropathy. Acta Paediatr. 99:1584–1586. 2010.PubMed/NCBI View Article : Google Scholar | |
He L, Peng Y, Liu H, Yin W, Chen X, Peng X, Shao J, Liu Y and Liu F: Activation of the interleukin-4/signal transducer and activator of transcription 6 signaling pathway and homeodomain-interacting protein kinase 2 production by tonsillar mononuclear cells in IgA nephropathy. Am J Nephrol. 38:321–332. 2013.PubMed/NCBI View Article : Google Scholar | |
Liu L, Kou P, Zeng Q, Pei G, Li Y, Liang H, Xu G and Chen S: CD4+ T Lymphocytes, especially Th2 cells, contribute to the progress of renal fibrosis. Am J Nephrol. 36:386–396. 2012.PubMed/NCBI View Article : Google Scholar | |
He L, Peng Y, Liu H, Yin W, Chen X, Peng X, Shao J, Liu Y and Liu F: Th1/Th2 polarization in tonsillar lymphocyte form patients with IgA nephropathy. Ren Fail. 36:407–412. 2014.PubMed/NCBI View Article : Google Scholar | |
Takahara M, Nagato T, Nozaki Y, Kumai T, Katada A, Hayashi T and Harabuchi Y: A proliferation-inducing ligand (APRIL) induced hyper-production of IgA from tonsillar mononuclear cells in patients with IgA nephropathy. Cell Immunol. 341(103925)2019.PubMed/NCBI View Article : Google Scholar | |
Glassock RJ: Mortality risk in IgA nephropathy. J Am Soc Nephrol. 30:720–722. 2019.PubMed/NCBI View Article : Google Scholar | |
Sallustio F, Serino G, Cox SN, Dalla Gassa A, Curci C, De Palma G, Banelli B, Zaza G, Romani M and Schena FP: Aberrantly methylated DNA regions lead to low activation of CD4+ T-cells in IgA nephropathy. Clin Sci (Lond). 130:733–746. 2016.PubMed/NCBI View Article : Google Scholar | |
Jang YS, Seo GY, Lee JM, Seo HY, Han HJ, Kim SJ, Jin BR, Kim HJ, Park SR, Rhee KJ, et al: Lactoferrin causes IgA and IgG2b isotype switching through betaglycan binding and activation of canonical TGF-β signaling. Mucosal Immunol. 8:906–917. 2015.PubMed/NCBI View Article : Google Scholar | |
Seo GY, Jang YS, Kim HA, Lee MR, Park MH, Park SR, Lee JM, Choe J and Kim PH: Retinoic acid, acting as a highly specific IgA isotype switch factor, cooperates with TGF-β1 to enhance the overall IgA response. J Leukoc Biol. 94:325–335. 2013.PubMed/NCBI View Article : Google Scholar | |
Bai L, Li H, Li J, Song J, Zhou Y, Liu B, Lu R, Zhang P, Chen J, Chen D, et al: Immunosuppressive effect of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via regulating the differentiation of CD4+ T cell subsets in rats. Int Immunopharmacol. 70:313–323. 2019.PubMed/NCBI View Article : Google Scholar | |
Ruszkowski J, Lisowska KA, Pindel M, Heleniak Z, Dębska-Ślizień A and Witkowski JM: T cells in IgA nephropathy: Role in pathogenesis, clinical significance and potential therapeutic target. Clin Exp Nephrol. 23:291–303. 2019.PubMed/NCBI View Article : Google Scholar | |
Xiao J, Wang M, Xiong D, Wang Y, Li Q, Zhou J and Chen Q: TGF-β1 mimics the effect of IL-4 on the glycosylation of IgA1 by downregulating core 1 β1, 3-galactosyltransferase and Cosmc. Mol Med Rep. 15:969–974. 2017.PubMed/NCBI View Article : Google Scholar | |
Inoshita H, Kim BG, Yamashita M, Choi SH, Tomino Y, Letterio JJ and Emancipator SN: Disruption of Smad4 expression in T cells leads to IgA nephropathy-like manifestations. PLoS One. 8(e78736)2013.PubMed/NCBI View Article : Google Scholar | |
Lai KN, Ho RT, Lai CK, Chan CH and Li PK: Increase of both circulating Th1 and Th2 T lymphocyte subsets in IgA nephropathy. Clin Exp Immunol. 96:116–121. 1994.PubMed/NCBI View Article : Google Scholar | |
Kagami S: IL-23 and Th17 cells in infections and psoriasis. Nihon Rinsho Meneki Gakkai Kaishi. 34:13–19. 2011.(In Japanese). PubMed/NCBI View Article : Google Scholar | |
Thomi R, Schlapbach C, Yawalkar N, Simon D, Yerly D and Hunger RE: Elevated levels of the antimicrobial peptide LL-37 in hidradenitis suppurativa are associated with a Th1/Th17 immune response. Exp Dermatol. 27:172–177. 2018.PubMed/NCBI View Article : Google Scholar | |
Waite JC and Skokos D: Th17 response and inflammatory autoimmune diseases. Int J Inflamm. 2012(819467)2012.PubMed/NCBI View Article : Google Scholar | |
Fu Y, Liu S, Wang Y, Ren F, Fan X, Liang J, Liu C, Li J, Ju Y and Chang Z: GdX/UBL4A-knockout mice resist collagen-induced arthritis by balancing the population of Th1/Th17 and regulatory T cells. FASEB J. 33:8375–8385. 2019.PubMed/NCBI View Article : Google Scholar | |
Peng Z, Tian J, Cui X, Xian W, Sun H, Li E, Geng L, Zhang L and Zhao P: Increased number of Th22 cells and correlation with Th17 cells in peripheral blood of patients with IgA nephropathy. Hum Immunol. 74:1586–1591. 2013.PubMed/NCBI View Article : Google Scholar | |
Yang L, Zhang X, Peng W, Wei M and Qin W: MicroRNA-155-induced T lymphocyte subgroup drifting in IgA nephropathy. Int Urol Nephrol. 49:353–361. 2017.PubMed/NCBI View Article : Google Scholar | |
Lin FJ, Jiang GR, Shan JP, Zhu C, Zou J and Wu XR: Imbalance of regulatory T cells to Th17 cells in IgA nephropathy. Scand J Clin Lab Invest. 72:221–229. 2012.PubMed/NCBI View Article : Google Scholar | |
Jain S, Stock A, Macian F and Putterman C: A distinct T follicular helper cell subset infiltrates the brain in murine neuropsychiatric lupus. Front Immunol. 9(487)2018.PubMed/NCBI View Article : Google Scholar | |
Gowthaman U, Chen JS, Zhang B, Flynn WF, Lu Y, Song W, Joseph J, Gertie JA, Xu L, Collet MA, et al: Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science. 365(eaaw6433)2019.PubMed/NCBI View Article : Google Scholar | |
Nus M, Sage AP, Lu Y, Masters L, Lam BYH, Newland S, Weller S, Tsiantoulas D, Raffort J, Marcus D, et al: Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat Med. 23:601–610. 2017.PubMed/NCBI View Article : Google Scholar | |
Grados A, Ebbo M, Piperoglou C, Groh M, Regent A, Samson M, Terrier B, Loundou A, Morel N, Audia S, et al: T cell polarization toward TH2/TFH2 and TH17/TFH17 in patients with IgG4-related disease. Front Immunol. 8(235)2017.PubMed/NCBI View Article : Google Scholar | |
Webb LMC and Linterman MA: Signals that drive T follicular helper cell formation. Immunology. 152:185–194. 2017.PubMed/NCBI View Article : Google Scholar | |
Makiyama A, Chiba A, Noto D, Murayama G, Yamaji K, Tamura N and Miyake S: Expanded circulating peripheral helper T cells in systemic lupus erythematosus: Association with disease activity and B cell differentiation. Rheumatology (Oxford). 58:1861–1869. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Long X and Wang X: Primary T-cell transduction to study follicular helper T-cell differentiation. Methods Mol Biol. 2111:115–126. 2020.PubMed/NCBI View Article : Google Scholar | |
Patakas A, Platt AM, Butcher JP, Maffia P, McInnes IB, Brewer JM, Garside P and Benson RA: Putative existence of reciprocal dialogue between Tfh and B cells and its impact on infectious and autoimmune disease. Immunol Lett. 138:38–46. 2011.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Yu M, Zheng Y, Fu G, Xin G, Zhu W, Luo L, Burns R, Li QZ, Dent AL, et al: CXCR5+PD-1+ follicular helper CD8 T cells control B cell tolerance. Nat Commun. 10(4415)2019.PubMed/NCBI View Article : Google Scholar | |
Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, Wyatt RJ, Scolari F, Mestecky J, Gharavi AG and Julian BA: The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 22:1795–1803. 2011.PubMed/NCBI View Article : Google Scholar | |
Wyatt RJ and Julian BA: IgA nephropathy. N Engl J Med. 368:2402–2414. 2013.PubMed/NCBI View Article : Google Scholar | |
Charbonnier LM, Cui Y, Stephen-Victor E, Harb H, Lopez D, Bleesing JJ, Garcia-Lloret MI, Chen K, Ozen A, Carmeliet P, et al: Functional reprogramming of regulatory T cells in the absence of Foxp3. Nat Immunol. 20:1208–1219. 2019.PubMed/NCBI View Article : Google Scholar | |
Cormican S and Griffin MD: The complex role of interleukin 6 in regulating T-cell responses during acute glomerulonephritis. J Am Soc Nephrol. 30:1341–1344. 2019.PubMed/NCBI View Article : Google Scholar | |
Huang H, Peng Y, Liu H, Yang X and Liu F: Decreased CD4+CD25+ cells and increased dimeric IgA-producing cells in tonsils in IgA nephropathy. J Nephrol. 23:202–209. 2010.PubMed/NCBI | |
Donadio ME, Loiacono E, Peruzzi L, Amore A, Camilla R, Chiale F, Vergano L, Boido A, Conrieri M, Bianciotto M, et al: Toll-like receptors, immunoproteasome and regulatory T cells in children with Henoch-Schönlein purpura and primary IgA nephropathy. Pediatr Nephrol. 29:1545–1551. 2014.PubMed/NCBI View Article : Google Scholar | |
Shen BL, Qu QS, Miao SZ, Liu BL, Liu RY and Gu DF: Study on the effects of regulatory T cells on renal function of IgAN rat model. Eur Rev Med Pharmacol Sci. 19:284–288. 2015.PubMed/NCBI | |
Yang S, Chen B, Shi J, Chen F, Zhang J and Sun Z: Analysis of regulatory T cell subsets in the peripheral blood of immunoglobulin A nephropathy (IgAN) patients. Genet Mol Res. 14:14088–14092. 2015.PubMed/NCBI View Article : Google Scholar | |
Trifari S, Kaplan CD, Tran EH, Crellin NK and Spits H: Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol. 10:864–871. 2009.PubMed/NCBI View Article : Google Scholar | |
Azizi G, Rastegar Pouyani M, Navabi SS, Yazdani R, Kiaee F and Mirshafiey A: The newly identified T helper 22 cells lodge in leukemia. Int J Hematol Oncol Stem Cell Res. 9:143–154. 2015.PubMed/NCBI | |
Xiao C, Xiao P, Li X, Huang G, Li H and Chen Y: Streptococcus may aggravate inflammatory damage in chronic nephritis via the chemotaxis of Th22 cells. Am J Transl Res. 11:7432–7440. 2019.PubMed/NCBI | |
Xiao C, Zhou Q, Li X, Li H, Zhong Y, Meng T, Zhu M, Sun H, Liu S, Tang R, et al: Losartan and dexamethasone may inhibit chemotaxis to reduce the infiltration of Th22 cells in IgA nephropathy. Int Immunopharmacol. 42:203–208. 2017.PubMed/NCBI View Article : Google Scholar | |
Liu K, Yang Y, Chen Y, Li S, Gong Y and Liang Y: The therapeutic effect of dendritic cells expressing indoleamine 2,3-dioxygenase (IDO) on an IgA nephropathy mouse model. Int Urol Nephrol. 52:399–407. 2020.PubMed/NCBI View Article : Google Scholar | |
Tomino Y, Ozaki T, Koide H, Yagame M, Eguchi K, Nomoto Y and Sakai H: Glomerular T cell and monocyte populations in patients with IgA nephropathy. Nihon Jinzo Gakkai Shi. 31:221–226. 1989.PubMed/NCBI | |
Sabadini E, Castiglione A, Colasanti G, Ferrario F, Civardi R, Fellin G and D'Amico G: Characterization of interstitial infiltrating cells in Berger's disease. Am J Kidney Dis. 12:307–315. 1988.PubMed/NCBI View Article : Google Scholar | |
Shimamine R, Shibata R, Ozono Y, Harada T, Taguchi T, Hara K and Kono S: Anti-CD8 monoclonal antibody protects against spontaneous IgA nephropathy in ddY mice. Nephron. 78:310–318. 1998.PubMed/NCBI View Article : Google Scholar | |
Johnson RJ, Iida H, Alpers CE, Majesky MW, Schwartz SM, Pritzi P, Gordon K and Gown AM: Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. J Clin Invest. 87:847–858. 1991.PubMed/NCBI View Article : Google Scholar | |
Alpers CE, Hudkins KL, Gown AM and Johnson RJ: Enhanced expression of ‘muscle-specific’ actin in glomerulonephritis. Kidney Int. 41:1134–1142. 1992.PubMed/NCBI View Article : Google Scholar | |
Watanabe T, Kawachi H, Ikezumi Y, Yanagihara T, Oda Y and Shimizu F: Glomerular CD8+ cells predict progression of childhood IgA nephropathy. Pediatr Nephrol. 16:561–567. 2001.PubMed/NCBI View Article : Google Scholar | |
Segerer S, Hughes E, Hudkins KL, Mack M, Goodpaster T and Alpers CE: Expression of the fractalkine receptor (CX3CR1) in human kidney diseases. Kidney Int. 62:488–495. 2002.PubMed/NCBI View Article : Google Scholar | |
Nishimura M, Umehara H, Nakayama T, Yoneda O, Hieshima K, Kakizaki M, Dohmae N, Yoshie O and Imai T: Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J Immunol. 168:6173–6180. 2002.PubMed/NCBI View Article : Google Scholar | |
Addison EG, North J, Bakhsh I, Marden C, Haq S, Al-Sarraj S, Malayeri R, Wickremasinghe RG, Davies JK and Lowdell MW: Ligation of CD8alpha on human natural killer cells prevents activation-induced apoptosis and enhances cytolytic activity. Immunology. 116:354–361. 2005.PubMed/NCBI View Article : Google Scholar | |
Yamanaka T, Tamauchi H, Suzuki Y, Suzuki H, Horikoshi S, Terashima M, Iwabuchi K, Habu S, Okumura K and Tomino Y: Release from Th1-type immune tolerance in spleen and enhanced production of IL-5 in Peyer's patch by cholera toxin B induce the glomerular deposition of IgA. Immunobiology. 221:577–585. 2016.PubMed/NCBI View Article : Google Scholar | |
Hyun YY, Kim IO, Kim MH, Nam DH, Lee MH, Kim JE, Song HK, Cha JJ, Kang YS, Lee JE, et al: Adipose-derived stem cells improve renal function in a mouse model of IgA nephropathy. Cell Transplant. 21:2425–2439. 2012.PubMed/NCBI View Article : Google Scholar | |
Hong SJ, Traktuev DO and March KL: Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant. 15:86–91. 2010.PubMed/NCBI View Article : Google Scholar | |
Chen F, Ma YL, Ding H and Chen BP: Effects of Tripterygium wilfordii glycosides on regulatory T cells and Th17 in an IgA nephropathy rat model. Genet Mol Res. 14:14900–14907. 2015.PubMed/NCBI View Article : Google Scholar |