1
|
Marimuthu K, Eisenring MC, Harbarth S and
Troillet N: Epidemiology of Staphylococcus aureus surgical
site infections. Surg Infect (Larchmt). 17:229–235. 2016.PubMed/NCBI View Article : Google Scholar
|
2
|
Heilmann C: Adhesion mechanisms of
staphylococci. Adv Exp Med Biol. 715:105–123. 2011.PubMed/NCBI View Article : Google Scholar
|
3
|
Speziale P, Pietrocola G, Rindi S,
Provenzano M, Provenza G, Di Poto A, Visai L and Arciola CR:
Structural and functional role of Staphylococcus aureus
surface components recognizing adhesive matrix molecules of the
host. Future Microbiol. 4:1337–1352. 2009.PubMed/NCBI View Article : Google Scholar
|
4
|
Weidenmaier C, Kokai-Kun JF, Kulauzovic E,
Kohler T, Thumm G, Stoll H, Götz F and Peschel A: Differential
roles of sortase-anchored surface proteins and wall teichoic acid
in Staphylococcus aureus nasal colonization. Int J Med
Microbiol. 298:505–513. 2008.PubMed/NCBI View Article : Google Scholar
|
5
|
Burian M, Rautenberg M, Kohler T, Fritz M,
Krismer B, Unger C, Hoffmann WH, Peschel A, Wolz C and Goerke C:
Temporal expression of adhesion factors and activity of global
regulators during establishment of Staphylococcus aureus
nasal colonization. J Infect Dis. 201:1414–1421. 2010.PubMed/NCBI View
Article : Google Scholar
|
6
|
Edwards R and Harding KG: Bacteria and
wound healing. Curr Opin Infectious Dis. 17:91–96. 2004.PubMed/NCBI View Article : Google Scholar
|
7
|
Poutahidis T, Kearney SM, Levkovich T, Qi
P, Varian BJ, Lakritz JR, Ibrahim YM, Chatzigiagkos A, Alm EJ and
Erdman SE: Microbial symbionts accelerate wound healing via the
neuropeptide hormone oxytocin. PLoS One. 8(e78898)2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Lee K, Lee JH, Ryu SY, Cho MH and Lee J:
Stilbenes reduce Staphylococcus aureus hemolysis, biofilm
formation, and virulence. Foodborne Pathog Dis. 11:710–717.
2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Bayles KW: The biological role of death
and lysis in biofilm development. Nat Rev Microbiol. 5:721–726.
2007.PubMed/NCBI View Article : Google Scholar
|
10
|
Otto M: Staphylococcal infections:
Mechanisms of biofilm maturation and detachment as critical
determinants of pathogenicity. Annu Rev Med. 64:175–188.
2013.PubMed/NCBI View Article : Google Scholar
|
11
|
Thoendel M, Kavanaugh JS, Flack CE and
Horswill AR: Peptide signaling in the staphylococci. Chem Rev.
111:117–151. 2011.PubMed/NCBI View Article : Google Scholar
|
12
|
Schierle CF, De la Garza M, Mustoe TA and
Galiano RD: Staphylococcal biofilms impair wound healing by
delaying reepithelialization in a murine cutaneous wound model.
Wound Repair Regen. 17:354–359. 2009.PubMed/NCBI View Article : Google Scholar
|
13
|
Roche ED, Renick PJ, Tetens SP, Ramsay SJ,
Daniels EQ and Carson DL: Increasing the presence of biofilm and
healing delay in a porcine model of MRSA-infected wounds. Wound
Repair Regen. 20:537–543. 2012.PubMed/NCBI View Article : Google Scholar
|
14
|
Anagnostakos K and Mosser P: Negative
pressure wound therapy in the management of postoperative
infections after musculoskeletal tumour surgery. J Wound Care.
23:191–194, 196-197. 2014.PubMed/NCBI View Article : Google Scholar
|
15
|
Hahn HM, Lee IJ, Woo KJ and Park BY:
Silver-impregnated negative-pressure wound therapy for the
treatment of lower-extremity open wounds: A prospective randomized
clinical study. Adv Skin Wound Care. 32:370–377. 2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Singh DP, Gowda AU, Chopra K, Tholen M,
Chang S, Mavrophilipos V, Semsarzadeh N, Rasko Y and Holton Iii L:
The effect of negative pressure wound therapy with antiseptic
instillation on biofilm formation in a porcine model of infected
spinal instrumentation. Wounds. 28:175–180. 2017.PubMed/NCBI
|
17
|
Glass GE, Murphy GRF and Nanchahal J: Does
negative-pressure wound therapy influence subjacent bacterial
growth? A systematic review. J Plast Reconstr Aesthet Surg.
70:1028–1037. 2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Ćirković I, Jocić D, Božić DD, Djukić S,
Konstantinović N and Radak D: The effect of vacuum-assisted closure
therapy on methicillin-resistant Staphylococcus aureus wound
biofilms. Adv Skin Wound Care. 31:361–364. 2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Islam N, Kim Y, Ross JM and Marten MR:
Proteomic analysis of Staphylococcus aureus biofilm cells
grown under physiologically relevant fluid shear stress conditions.
Proteome Sci. 12(21)2014.PubMed/NCBI View Article : Google Scholar
|
20
|
Castro SL, Nelman-Gonzalez M, Nickerson CA
and Ott CM: Induction of attachment-independent biofilm formation
and repression of Hfq expression by low-fluid-shear culture of
Staphylococcus aureus. Appl Environ Microbiol. 77:6368–6378.
2011.PubMed/NCBI View Article : Google Scholar
|
21
|
Rosado H, Doyle M, Hinds J and Taylor PW:
Low-shear modelled microgravity alters expression of virulence
determinants of Staphylococcus aureus. Acta Astronautica.
66:408–413. 2010.
|
22
|
Li T, Wang G, Yin P, Li Z, Zhang L, Liu J,
Li M, Zhang L, Han L and Tang P: Effect of negative pressure on
growth, secretion and biofilm formation of Staphylococcus
aureus. Antonie van Leeuwenhoek. 108:907–917. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Institute of Laboratory Animal Resources
(US). Committee on Care, Use of Laboratory Animals, and National
Institutes of Health (US). Division of Research Resources: Guide
for the care and use of laboratory animals. 8th edition. National
Academies Press, Washington, DC, 2011.
|
24
|
Seth AK, Geringer MR, Nguyen KT, Agnew SP,
Dumanian Z, Galiano RD, Leung KP, Mustoe TA and Hong SJ:
Bacteriophage therapy for Staphylococcus aureus
biofilm-infected wounds: A new approach to chronic wound care.
Plast Reconstr Surg. 131:225–234. 2013.PubMed/NCBI View Article : Google Scholar
|
25
|
Liu D, Zhang L, Li T, Wang G, Du H, Hou H,
Han L and Tang P: Negative-pressure wound therapy enhances local
inflammatory responses in acute infected soft-tissue wound. Cell
Biochem Biophys. 70:539–547. 2014.PubMed/NCBI View Article : Google Scholar
|
26
|
Liu D, Li Z, Wang G, Li T, Zhang L and
Tang P: Virulence analysis of Staphylococcus aureus in a
rabbit model of infected full-thickness wound under negative
pressure wound therapy. Antonie van Leeuwenhoek. 111:161–170.
2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Lalliss SJ, Stinner DJ, Waterman SM,
Branstetter JG, Masini BD and Wenke JC: Negative pressure wound
therapy reduces pseudomonas wound contamination more than
Staphylococcus aureus. J Orthop Trauma. 24:598–602.
2010.PubMed/NCBI View Article : Google Scholar
|
28
|
Kamamoto F, Lima ALM, Rezende MR,
Mattar-Junior R, Leonhardt MC, Kojima KE and Santos CCD: A new
low-cost negative-pressure wound therapy versus a commercially
available therapy device widely used to treat complex traumatic
injuries: A prospective, randomized, non-inferiority trial. Clinics
(Sao Paulo). 72:737–742. 2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Morykwas MJ, Argenta LC, Shelton-Brown EI
and McGuirt W: Vacuum-assisted closure: A new method for wound
control and treatment: Animal studies and basic foundation. Ann
Plast Surg. 38:553–562. 1997.PubMed/NCBI View Article : Google Scholar
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCt method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar
|
31
|
Omar A, Wright JB, Schultz G, Burrell R
and Nadworny P: Microbial Biofilms and Chronic Wounds.
Microorganisms. 5(pii:E9)2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Swanson EA, Freeman LJ, Seleem MN and
Snyder PW: Biofilm-infected wounds in a dog. J Am Vet Med Assoc.
244:699–707. 2014.PubMed/NCBI View Article : Google Scholar
|
33
|
Boles BR and Horswill AR: Staphylococcal
biofilm disassembly. Trends Microbiol. 19:449–455. 2011.PubMed/NCBI View Article : Google Scholar
|
34
|
Licker M, Moldovan R, Hogea E, Muntean D,
Horhat F, Bădiţoiu L, Rogobete A, Tirziu E and Zambori C: Microbial
biofilm in human health-An updated theoretical and practical
insight. Romanian J Laboratory Med. 25:9–26. 2017.
|
35
|
Li T, Zhang L, Han LI, Wang G, Yin P, Li
Z, Zhang L, Guo Q, Liu D and Tang P: Early application of negative
pressure wound therapy to acute wounds contaminated with
Staphylococcus aureus: An effective approach to preventing
biofilm formation. Exp Ther Med. 11:769–776. 2016.PubMed/NCBI View Article : Google Scholar
|
36
|
Cornforth DM, Dees JL, Ibberson CB, Huse
HK, Mathiesen IH, Kirketerp-Møller K, Wolcott RD, Rumbaugh KP,
Bjarnsholt T and Whiteley M: Pseudomonas aeruginosa transcriptome
during human infection 115: E5125-E5134, 2018.
|
37
|
Copeland H, Newcombe J, Yamin F, Bhajri K,
Mille VA, Hasaniya N, Bailey L and Razzouk AJ: Role of negative
pressure wound care and hyperbaric oxygen therapy for sternal wound
infections after pediatric cardiac surgery. World J Pediatr
Congenit Heart Surg. 9:440–445. 2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Tahir S, Malone M, Hu H, Deva A and
Vickery K: The Effect of negative pressure wound therapy with and
without instillation on mature biofilms in vitro. Materials
(Basel). 11(pii: E811)2018.PubMed/NCBI View Article : Google Scholar
|
39
|
Song J, Lays C, Vandenesch F, Benito Y,
Bes M, Chu Y, Lina G, Romby P, Geissmann T and Boisset S: The
expression of small regulatory RNAs in clinical samples reflects
the different life styles of Staphylococcus aureus in
colonization vs. infection. PLoS One. 7(e37294)2012.PubMed/NCBI View Article : Google Scholar
|
40
|
Huang C, Leavitt T, Bayer LR and Orgill
DP: Effect of negative pressure wound therapy on wound healing.
Curr Probl Surg. 51:301–331. 2014.PubMed/NCBI View Article : Google Scholar
|
41
|
Nie B and Yue B: Biological effects and
clinical application of negative pressure wound therapy: A review.
J Wound Care. 25:617–626. 2016.PubMed/NCBI View Article : Google Scholar
|
42
|
Patil PS, Evancho-Chapman MM, Li H, Huang
H, George RL, Shriver LP and Leipzig ND: Fluorinated methacrylamide
chitosan hydrogel dressings enhance healing in an acute porcine
wound model. PLoS One. 13:e0203371. 2018.PubMed/NCBI View Article : Google Scholar
|