1
|
Maron BJ, Casey SA, Olivotto I, Sherrid
MV, Semsarian C, Autore C, Ahmed A, Boriani G, Francia P, Winters
SL, et al: Clinical course and quality of life in high-risk
patients with hypertrophic cardiomyopathy and implantable
cardioverter-defibrillators. Circ Arrhythm Electrophysiol.
11(e005820)2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Maron BJ: Recognition of hypertrophic
cardiomyopathy as a contemporary, relatively common, and treatable
disease (from the international summit V). Am J Cardiol.
113:739–744. 2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Spudich JA: Hypertrophic and dilated
cardiomyopathy: Four decades of basic research on muscle lead to
potential therapeutic approaches to these devastating genetic
diseases. Biophys J. 106:1236–1249. 2014.PubMed/NCBI View Article : Google Scholar
|
4
|
Roma-Rodrigues C and Fernandes AR:
Genetics of hypertrophic cardiomyopathy: Advances and pitfalls in
molecular diagnosis and therapy. Appl Clin Genet. 7:195–208.
2014.PubMed/NCBI View Article : Google Scholar
|
5
|
de Gregorio C and Andò G: Risk of sudden
death and outcome in patients with hypertrophic cardiomyopathy with
benign presentation and without risk factors: A word of comfort to
younger patients? Am J Cardiol. 114:500–501. 2014.PubMed/NCBI View Article : Google Scholar
|
6
|
Spirito P, Autore C, Formisano F, Assenza
GE, Biagini E, Haas TS, Bongioanni S, Semsarian C, Devoto E,
Musumeci B, et al: Risk of sudden death and outcome in patients
with hypertrophic cardiomyopathy with benign presentation and
without risk factors. Am J Cardiol. 113:1550–1555. 2014.PubMed/NCBI View Article : Google Scholar
|
7
|
Towe EC, Bos JM, Ommen SR, Gersh BJ and
Ackerman MJ: Genotype-phenotype correlations in apical variant
hypertrophic cardiomyopathy. Congenit Heart Dis. 10:E139–E145.
2015.PubMed/NCBI View Article : Google Scholar
|
8
|
Cirino AL, Harris S, Lakdawala NK, Michels
M, Olivotto I, Day SM, Abrams DJ, Charron P, Caleshu C, Semsarian
C, et al: Role of genetic testing in inherited cardiovascular
disease: A review. JAMA Cardiol. 2:1153–1160. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Roma-Rodrigues C, Raposo LR and Fernandes
AR: MicroRNAs based therapy of hypertrophic cardiomyopathy: The
road traveled so far. BioMed Res Int. 2015(983290)2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Sartorio CL, Lazzeroni D, Bertoli G and
Camici PG: Theranostic biomarkers in hypertrophic cardiomyopathy:
Insights in a long road ahead. Front Biosci (Landmark Ed).
22:1724–1749. 2017.PubMed/NCBI
|
11
|
Liebetrau C, Mollmann H, Dörr O, Szardien
S, Troidl C, Willmer M, Voss S, Gaede L, Rixe J, Rolf A, et al:
Release kinetics of circulating muscle-enriched microRNAs in
patients undergoing transcoronary ablation of septal hypertrophy. J
Am Coll Cardiol. 62:992–998. 2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Bagnall RD, Tsoutsman T, Shephard RE,
Ritchie W and Semsarian C: Global microRNA profiling of the mouse
ventricles during development of severe hypertrophic cardiomyopathy
and heart failure. PLoS One. 7(e44744)2012.PubMed/NCBI View Article : Google Scholar
|
13
|
Sayed D, Hong C, Chen IY, Lypowy J and
Abdellatif M: MicroRNAs play an essential role in the development
of cardiac hypertrophy. Circ Res. 100:416–424. 2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Ntelios D, Meditskou S, Efthimiadis G,
Pitsis A, Nikolakaki E, Girtovitis F, Parcharidou D, Zegkos T,
Kouidou S, Karvounis H and Tzimagiorgis G: Elevated plasma levels
of miR-29a are associated with hemolysis in patients with
hypertrophic cardiomyopathy. Clin Chim Acta. 471:321–326.
2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Fang L, Ellims AH, Moore XL, White DA,
Taylor AJ, Chin-Dusting J and Dart AM: Circulating microRNAs as
biomarkers for diffuse myocardial fibrosis in patients with
hypertrophic cardiomyopathy. J Transl Med. 13(314)2015.PubMed/NCBI View Article : Google Scholar
|
16
|
Li X, He X, Wang H, Li M, Huang S, Chen G,
Jing Y, Wang S, Chen Y, Liao W, et al: Loss of AZIN2 splice variant
facilitates endogenous cardiac regeneration. Cardiovasc Res.
114:1642–1655. 2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Ono K, Kuwabara Y, Horie T and Kimura T:
Long non-coding RNAs as key regulators of cardiovascular diseases.
Circ J. 82:1231–1236. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Kaur H, Sarmah D, Saraf J, Vats K, Kalia
K, Borah A, Yavagal DR, Dave KR, Ghosh Z and Bhattacharya P:
Noncoding RNAs in ischemic stroke: Time to translate. Ann N Y Acad
Sci. 1421:19–36. 2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Liang H, Pan Z, Zhao X, Liu L, Sun J, Su
X, Xu C, Zhou Y, Zhao D, Xu B, et al: LncRNA PFL contributes to
cardiac fibrosis by acting as a competing endogenous RNA of let-7d.
Theranostics. 8:1180–1194. 2018.PubMed/NCBI View Article : Google Scholar
|
20
|
He L, Chen Y, Hao S and Qian J: Uncovering
novel landscape of cardiovascular diseases and therapeutic targets
for cardioprotection via long noncoding RNA-miRNA-mRNA axes.
Epigenomics. 10:661–671. 2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Liu X, Ma Y, Yin K, Li W, Chen W, Zhang Y,
Zhu C, Li T, Han B, Liu X, et al: Long non-coding and coding RNA
profiling using strand-specific RNA-seq in human hypertrophic
cardiomyopathy. Sci Data. 6(90)2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Yang W, Li Y, He F and Wu H: Microarray
profiling of long non-coding RNA (lncRNA) associated with
hypertrophic cardiomyopathy. BMC Cardiovasc Disord.
15(62)2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Liang H, Su X, Wu Q, Shan H, Lv L, Yu T,
Zhao X, Sun J, Yang R, Zhang L, et al: LncRNA 2810403D21Rik/Mirf
promotes ischemic myocardial injury by regulating autophagy through
targeting Mir26a. Autophagy. 12:1–15. 2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Feng Y, Xu W, Zhang W, Wang W, Liu T and
Zhou X: LncRNA DCRF regulates cardiomyocyte autophagy by targeting
miR-551b-5p in diabetic cardiomyopathy. Theranostics. 9:4558–4566.
2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhang M, Jiang Y, Guo X, Zhang B, Wu J,
Sun J, Liang H, Shan H, Zhang Y, Liu J, et al: Long non-coding RNA
cardiac hypertrophy-associated regulator governs cardiac
hypertrophy via regulating miR-20b and the downstream PTEN/AKT
pathway. J Cell Mol Med. 23:7685–7698. 2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Rehmsmeier M, Steffen P, Hochsmann M and
Giegerich R: Fast and effective prediction of microRNA/target
duplexes. RNA. 10:1507–1517. 2004.PubMed/NCBI View Article : Google Scholar
|
27
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003.PubMed/NCBI View Article : Google Scholar
|
28
|
Maron BJ and Maron MS: Hypertrophic
cardiomyopathy. Lancet. 381:242–255. 2013.PubMed/NCBI View Article : Google Scholar
|
29
|
Rakowski H: Determining hypertrophic
cardiomyopathy mortality: Gaining wisdom from knowledge. JAMA
Cardiol 2019.
|
30
|
Liu F, Fu J, His D, Sun C, He G, Hu R,
Zhang J and Liu L: Percutaneous intramyocardial septal
radiofrequency ablation for interventricular septal reduction: An
ovine model with 1-year outcomes. Cardiology. 20:1–10.
2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Boll G, Rowin EJ, Maron BJ, Wang W,
Rastegar H and Maron MS: Efficacy of combined cox-maze IV and
ventricular septal myectomy for treatment of atrial fibrillation in
patients with obstructive hypertrophic cardiomyopathy. Am J
Cardiol. 125:120–126. 2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Kitow J, Derda AA, Beermann J, Kumarswarmy
R, Pfanne A, Fendrich J, Lorenzen JM, Xiao K, Bavendiek U,
Bauersachs J and Thum T: Mitochondrial long noncoding RNAs as blood
based biomarkers for cardiac remodeling in patients with
hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol.
311:H707–H712. 2016.PubMed/NCBI View Article : Google Scholar
|
33
|
Gómez J, Lorca R, Reguero JR, Martin M,
Moris C, Alonso B, Iglesias S, Diaz-Molina B, Avanzas P and Coto E:
Genetic variation at the long noncoding RNA H19 gene is associated
with the risk of hypertrophic cardiomyopathy. Epigenomics.
10:865–873. 2018.PubMed/NCBI View Article : Google Scholar
|
34
|
Shi H, Li J, Song Q, Cheng L, Sun H, Fan
W, Li J, Wang Z and Zhang G: Systematic identification and analysis
of dysregulated miRNA and transcription factor feed-forward loops
in hypertrophic cardiomyopathy. J Cell Mol Med. 23:306–316.
2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Li M, Chen X, Chen L, Chen K, Zhou J and
Song J: MiR-1-3p that correlates with left ventricular function of
HCM can serve as a potential target and differentiate HCM from DCM.
J Trans Med. 16(161)2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Song L, Su M, Wang S, Zou Y, Wang X, Wang
Y, Cui H, Zhao P, Hui R and Wang J: MiR-451 is decreased in
hypertrophic cardiomyopathy and regulates autophagy by targeting
TSC1. J Cell Mol Med. 18:2266–2274. 2014.PubMed/NCBI View Article : Google Scholar
|
37
|
Wang D, Zhai G, Ji Y and Jing H:
microRNA-10a targets T-box 5 to inhibit the development of cardiac
hypertrophy. Int Heart J. 58:100–106. 2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Wang F, Yang XY, Zhao JY, Yu LW, Zhang P,
Duan WY, Chong M and Gui YH: miR-10a and miR-10b target the
3'-untranslated region of TBX5 to repress its expression. Pediatr
Cardiol. 35:1072–1079. 2014.PubMed/NCBI View Article : Google Scholar
|
39
|
Jia G, DeMarco VG and Sowers JR: Insulin
resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat
Rev Endocrinol. 12:144–153. 2016.PubMed/NCBI View Article : Google Scholar
|
40
|
Raut SK, Kumar A, Singh GB, Nahar U,
Sharma V, Mittal A, Sharma R and Khullar M: miR-30c mediates
upregulation of Cdc42 and Pak1 in diabetic cardiomyopathy.
Cardiovasc Ther. 33:89–97. 2015.PubMed/NCBI View Article : Google Scholar
|
41
|
Raut SK, Singh GB, Rastogi B, Saikia UN,
Mittal A, Dogra N, Singh S, Prasad R and Khullar M: miR-30c and
miR-181a synergistically modulate p53-p21 pathway in diabetes
induced cardiac hypertrophy. Mol Cell Biochem. 417:191–203.
2016.PubMed/NCBI View Article : Google Scholar
|
42
|
Liu X, Ye B, Miller S, Yuan H, Zhang H,
Tian L, Nie J, Imae R, Arai H, Li Y, et al: Ablation of ALCAT1
mitigates hypertrophic cardiomyopathy through effects on oxidative
stress and mitophagy. Mol Cell Biol. 32:4493–4504. 2012.PubMed/NCBI View Article : Google Scholar
|
43
|
Krishnan J, Suter M, Windak R, Krebs T,
Felley A, Montessuit C, Tokarska-Schlattner M, Aasum E, Bogdanova
A, Perriard E, et al: Activation of a HIF1alpha-PPARgamma axis
underlies the integration of glycolytic and lipid anabolic pathways
in pathologic cardiac hypertrophy. Cell Metab. 9:512–524.
2009.PubMed/NCBI View Article : Google Scholar
|
44
|
Murphy RT, Mogensen J, McGarry K, Bahl A,
Evans A, Osman E, Syrris P, Gorman G, Farrell M, Holton JL, et al:
Adenosine monophosphate-activated protein kinase disease mimicks
hypertrophic cardiomyopathy and wolff-parkinson-white syndrome:
Natural history. J Am Coll Cardiol. 45:922–930. 2005.PubMed/NCBI View Article : Google Scholar
|
45
|
Bauersachs J, Störk S, Kung M, Waller C,
Fidler F, Hoyer C, Frantz S, Weidemann F, Ertl G and Angermann CE:
HMG CoA reductase inhibition and left ventricular mass in
hypertrophic cardiomyopathy: A randomized placebo-controlled pilot
study. Eur J Clin Invest. 37:852–859. 2007.PubMed/NCBI View Article : Google Scholar
|
46
|
Rani DS, Nallari P, Priyamvada S,
Narasimhan C, Singh L and Thangaraj K: High prevalence of arginine
to glutamine substitution at 98, 141 and 162 positions in troponin
I (TNNI3) associated with hypertrophic cardiomyopathy among
Indians. BMC Med Genet. 13(69)2012.PubMed/NCBI View Article : Google Scholar
|
47
|
Jimenez J and Tardiff JC: Abnormal heart
rate regulation in murine hearts with familial hypertrophic
cardiomyopathy-related cardiac troponin T mutations. Am J Physiol
Heart Circ Physiol. 300:H627–H635. 2011.PubMed/NCBI View Article : Google Scholar
|
48
|
Chen X, Xie D, Zhao Q and You ZH:
MicroRNAs and complex diseases: From experimental results to
computational models. Brief Bioinform. 20:515–539. 2019.PubMed/NCBI View Article : Google Scholar
|
49
|
Chen X, Wang L, Qu J, Guan NN and Li JQ:
Predicting miRNA-disease association based on inductive matrix
completion. Bioinformatics. 34:4256–4265. 2018.PubMed/NCBI View Article : Google Scholar
|
50
|
Li Y, Zhang J, Huo C, Ding N, Li J, Xiao
J, Lin X, Cai B, Zhang Y and Xu J: Dynamic organization of lncRNA
and circular RNA regulators collectively controlled cardiac
differentiation in humans. EBioMedicine. 24:137–146.
2017.PubMed/NCBI View Article : Google Scholar
|
51
|
Li Z, Zhang Y, Ding N, Zhao Y, Ye Z, Shen
L, Yi H and Zhu Y: Inhibition of lncRNA XIST improves myocardial
I/R injury by targeting miR-133a through inhibition of autophagy
and regulation of SOCS2. Mol Ther Nucleic Acids. 18:764–773.
2019.PubMed/NCBI View Article : Google Scholar
|
52
|
Tay Y, Rinn J and Pandolfi PP: The
multilayered complexity of ceRNA crosstalk and competition. Nature.
505:344–352. 2014.PubMed/NCBI View Article : Google Scholar
|
53
|
Dykes IM and Emanueli C: Transcriptional
and post-transcriptional gene regulation by long non-coding RNA.
Genomics Proteomics Bioinformatics. 15:177–186. 2017.PubMed/NCBI View Article : Google Scholar
|
54
|
Oh JG, Watanabe S, Lee A, Gorski PA, Lee
P, Jeong D, Liang L, Liang Y, Baccarini A, Sahoo S, et al: miR-146a
suppresses SUMO1 expression and induces cardiac dysfunction in
maladaptive hypertrophy. Circ Res. 123:673–685. 2018.PubMed/NCBI View Article : Google Scholar
|
55
|
Wang K, Long B, Liu F, Wang JX, Liu CY,
Zhao B, Zhou LY, Sun T, Wang M, Yu T, et al: A circular RNA
protects the heart from pathological hypertrophy and heart failure
by targeting miR-223. Eur Heart J. 37:2602–2611. 2016.PubMed/NCBI View Article : Google Scholar
|
56
|
Bang C, Batkai S, Dangwal S, Gupta SK,
Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A, et al:
Cardiac fibroblast-derived microRNA passenger strand-enriched
exosomes mediate cardiomyocyte hypertrophy. J Clin Invest.
124:2136–2146. 2014.PubMed/NCBI View Article : Google Scholar
|
57
|
Yuan Y, Wang J, Chen Q, Wu Q, Deng W, Zhou
H and Shen D: Long non-coding RNA cytoskeleton regulator RNA
(CYTOR) modulates pathological cardiac hypertrophy through
miR-155-mediated IKKi signaling. Biochim Biophys Acta Mol Basis
Dis. 1865:1421–1427. 2019.PubMed/NCBI View Article : Google Scholar
|
58
|
Li J, Wu Z, Zheng D, Sun Y, Wang S and Yan
Y: Bioinformatics analysis of the regulatory lncRNAmiRNAmRNA
network and drug prediction in patients with hypertrophic
cardiomyopathy. Mol Med Rep. 20:549–558. 2019.PubMed/NCBI View Article : Google Scholar
|