Open Access

Interpretable artificial intelligence framework for COVID‑19 screening on chest X‑rays

  • Authors:
    • Nikos Tsiknakis
    • Eleftherios Trivizakis
    • Evangelia E. Vassalou
    • Georgios Z. Papadakis
    • Demetrios A. Spandidos
    • Aristidis Tsatsakis
    • Jose Sánchez‑García
    • Rafael López‑González
    • Nikolaos Papanikolaou
    • Apostolos H. Karantanas
    • Kostas Marias
  • View Affiliations

  • Published online on: May 27, 2020     https://doi.org/10.3892/etm.2020.8797
  • Pages: 727-735
  • Copyright: © Tsiknakis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

COVID-19 has led to an unprecedented healthcare crisis with millions of infected people across the globe often pushing infrastructures, healthcare workers and entire economies beyond their limits. The scarcity of testing kits, even in developed countries, has led to extensive research efforts towards alternative solutions with high sensitivity. Chest radiological imaging paired with artificial intelligence (AI) can offer significant advantages in diagnosis of novel coronavirus infected patients. To this end, transfer learning techniques are used for overcoming the limitations emanating from the lack of relevant big datasets, enabling specialized models to converge on limited data, as in the case of X‑rays of COVID‑19 patients. In this study, we present an interpretable AI framework assessed by expert radiologists on the basis on how well the attention maps focus on the diagnostically‑relevant image regions. The proposed transfer learning methodology achieves an overall area under the curve of 1 for a binary classification problem across a 5‑fold training/testing dataset.
View Figures
View References

Related Articles

Journal Cover

August-2020
Volume 20 Issue 2

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Tsiknakis N, Trivizakis E, Vassalou EE, Papadakis GZ, Spandidos DA, Tsatsakis A, Sánchez‑García J, López‑González R, Papanikolaou N, Karantanas AH, Karantanas AH, et al: Interpretable artificial intelligence framework for COVID‑19 screening on chest X‑rays. Exp Ther Med 20: 727-735, 2020.
APA
Tsiknakis, N., Trivizakis, E., Vassalou, E.E., Papadakis, G.Z., Spandidos, D.A., Tsatsakis, A. ... Marias, K. (2020). Interpretable artificial intelligence framework for COVID‑19 screening on chest X‑rays. Experimental and Therapeutic Medicine, 20, 727-735. https://doi.org/10.3892/etm.2020.8797
MLA
Tsiknakis, N., Trivizakis, E., Vassalou, E. E., Papadakis, G. Z., Spandidos, D. A., Tsatsakis, A., Sánchez‑García, J., López‑González, R., Papanikolaou, N., Karantanas, A. H., Marias, K."Interpretable artificial intelligence framework for COVID‑19 screening on chest X‑rays". Experimental and Therapeutic Medicine 20.2 (2020): 727-735.
Chicago
Tsiknakis, N., Trivizakis, E., Vassalou, E. E., Papadakis, G. Z., Spandidos, D. A., Tsatsakis, A., Sánchez‑García, J., López‑González, R., Papanikolaou, N., Karantanas, A. H., Marias, K."Interpretable artificial intelligence framework for COVID‑19 screening on chest X‑rays". Experimental and Therapeutic Medicine 20, no. 2 (2020): 727-735. https://doi.org/10.3892/etm.2020.8797