1
|
Usher-Smith JA, Walter FM, Emery JD, Win
AK and Griffin SJ: Risk prediction models for colorectal cancer: A
Systematic Review. Cancer Prev Res (Phila). 9:13–26.
2016.PubMed/NCBI View Article : Google Scholar
|
2
|
Matsuda T, Yamashita K, Hasegawa H,
Oshikiri T, Hosono M, Higashino N, Yamamoto M, Matsuda Y, Kanaji S,
Nakamura T, et al: Recent updates in the surgical treatment of
colorectal cancer. Ann Gastroenterol Surg. 2:129–136.
2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Redondo-Blanco S, Fernández J,
Gutiérrez-Del-Río I, Villar CJ and Lombó F: New insights toward
colorectal cancer chemotherapy using natural bioactive compounds.
Front Pharmacol. 8(109)2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Wu T, Wang Z, Liu Y, Mei Z, Wang G, Liang
Z, Cui A, Hu X, Cui L, Yang Y, et al: Interleukin 22 protects
colorectal cancer cells from chemotherapy by activating the STAT3
pathway and inducing autocrine expression of interleukin 8. Clin
Immunol. 154:116–126. 2014.PubMed/NCBI View Article : Google Scholar
|
5
|
Wang B, Ogata H, Takishima Y, Miyamoto S,
Inoue H, Kuroda M, Yamada K, Hijikata Y, Murahashi M, Shimizu H, et
al: A novel combination therapy for human oxaliplatin-resistant
colorectal cancer using oxaliplatin and coxsackievirus A11.
Anticancer Res. 38:6121–6126. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Chen M, Liang X, Gao C, Zhao R, Zhang N,
Wang S, Chen W, Zhao B, Wang J and Dai Z: Ultrasound triggered
conversion of porphyrin/camptothecin-fluoroxyuridine triad
microbubbles into nanoparticles overcomes multidrug resistance in
colorectal cancer. ACS Nano. 12:7312–7326. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Ou J, Peng Y, Yang W, Zhang Y, Hao J, Li
F, Chen Y, Zhao Y, Xie X, Wu S, et al: ABHD5 blunts the sensitivity
of colorectal cancer to fluorouracil via promoting autophagic
uracil yield. Nat Commun. 10(1078)2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Park SM, Hwang CY, Cho SH, Lee D, Gong JR,
Lee S, Nam S and Cho KH: Systems analysis identifies potential
target genes to overcome cetuximab resistance in colorectal cancer
cells. FEBS J. 286:1305–1318. 2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Zhu S, Dong Z, Ke X, Hou J, Zhao E, Zhang
K, Wang F, Yang L, Xiang Z and Cui H: The roles of sirtuins family
in cell metabolism during tumor development. Semin Cancer Biol.
57:59–71. 2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Carafa V, Altucci L and Nebbioso A: Dual
tumor suppressor and tumor promoter action of sirtuins in
determining malignant phenotype. Front Pharmacol.
10(38)2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Mei Z, Zhang X, Yi J, Huang J, He J and
Tao Y: Sirtuins in metabolism, DNA repair and cancer. J Exp Clin
Cancer Res. 35(182)2016.PubMed/NCBI View Article : Google Scholar
|
12
|
Zhu Y, Wang G, Li X, Wang T, Weng M and
Zhang Y: Knockout of SIRT4 decreases chemosensitivity to 5-FU in
colorectal cancer cells. Oncol Lett. 16:1675–1681. 2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Vellinga TT, Borovski T, de Boer VC,
Fatrai S, van Schelven S, Trumpi K, Verheem A, Snoeren N, Emmink
BL, Koster J, et al: SIRT1/PGC1α-dependent increase in oxidative
phosphorylation supports chemotherapy resistance of colon cancer.
Clin Cancer Res. 21:2870–2879. 2015.PubMed/NCBI View Article : Google Scholar
|
14
|
Bajpe PK, Prahallad A, Horlings H,
Nagtegaal I, Beijersbergen R and Bernards R: A chromatin modifier
genetic screen identifies SIRT2 as a modulator of response to
targeted therapies through the regulation of MEK kinase activity.
Oncogene. 34:531–536. 2015.PubMed/NCBI View Article : Google Scholar
|
15
|
San Hipólito-Luengo Á, Alcaide A,
Ramos-González M, Cercas E, Vallejo S, Romero A, Talero E,
Sánchez-Ferrer CF, Motilva V and Peiró C: Dual effects of
resveratrol on cell death and proliferation of colon cancer cells.
Nutr Cancer. 69:1019–1027. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Oon CE, Strell C, Yeong KY, Östman A and
Prakash J: SIRT1 inhibition in pancreatic cancer models:
Contrasting effects in vitro and in vivo. Eur J Pharmacol.
757:59–67. 2015.PubMed/NCBI View Article : Google Scholar
|
17
|
Ma W, Zhao X, Wang K, Liu J and Huang G:
Dichloroacetic acid (DCA) synergizes with the SIRT2 inhibitor
Sirtinol and AGK2 to enhance anti-tumor efficacy in non-small cell
lung cancer. Cancer Biol Ther. 19:835–846. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Hsu YF, Sheu JR, Lin CH, Yang DS, Hsiao G,
Ou G, Chiu PT, Huang YH, Kuo WH and Hsu MJ: Trichostatin A and
sirtinol suppressed survivin expression through AMPK and p38MAPK in
HT29 colon cancer cells. Biochim Biophys Acta. 1820:104–115.
2012.PubMed/NCBI View Article : Google Scholar
|
19
|
Wang Y, Yang L, Zhang J, Zhou M, Shen L,
Deng W, Liang L, Hu R, Yang W, Yao Y, et al: Radiosensitization by
irinotecan is attributed to G2/M phase arrest, followed by enhanced
apoptosis, probably through the ATM/Chk/Cdc25C/Cdc2 pathway in
p53-mutant colorectal cancer cells. Int J Oncol. 53:1667–1680.
2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Sedic M, Poznic M, Gehrig P, Scott M,
Schlapbach R, Hranjec M, Karminski-Zamola G, Pavelic K and
Kraljevic Pavelic S: Differential antiproliferative mechanisms of
novel derivative of benzimidazo[1,2-alpha]quinoline in colon cancer
cells depending on their p53 status. Mol Cancer Ther. 7:2121–2132.
2008.PubMed/NCBI View Article : Google Scholar
|
21
|
Sen Z, Zhan XK, Jing J, Yi Z and Wanqi Z:
Chemosensitizing activities of cyclotides from Clitoria
ternatea in paclitaxel-resistant lung cancer cells. Oncol Lett.
5:641–644. 2013.PubMed/NCBI View Article : Google Scholar
|
22
|
Chou TC: Drug combination studies and
their synergy quantification using the Chou-Talalay method. Cancer
Res. 70:440–446. 2010.PubMed/NCBI View Article : Google Scholar
|
23
|
Sheffer M, Bacolod MD, Zuk O, Giardina SF,
Pincas H, Barany F, Paty PB, Gerald WL, Notterman DA and Domany E:
Association of survival and disease progression with chromosomal
instability: A genomic exploration of colorectal cancer. Proc Natl
Acad Sci USA. 106:7131–7136. 2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Li H, Chiappinelli KB, Guzzetta AA,
Easwaran H, Yen RW, Vatapalli R, Topper MJ, Luo J, Connolly RM,
Azad NS, et al: Immune regulation by low doses of the DNA
methyltransferase inhibitor 5-azacitidine in common human
epithelial cancers. Oncotarget. 5:587–598. 2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhang Y, He W and Zhang S: Seeking for
correlative genes and signaling pathways with bone metastasis from
breast cancer by integrated analysis. Front Oncol.
9(138)2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Leroy B, Fournier JL, Ishioka C, Monti P,
Inga A, Fronza G and Soussi T: The TP53 website: An integrative
resource centre for the TP53 mutation database and TP53 mutant
analysis. Nucleic Acids Res. 41:D962–D969. 2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Blagosklonny MV, Trostel S, Kayastha G,
Demidenko ZN, Vassilev LT, Romanova LY, Bates S and Fojo T:
Depletion of mutant p53 and cytotoxicity of histone deacetylase
inhibitors. Cancer Res. 65:7386–7392. 2005.PubMed/NCBI View Article : Google Scholar
|
28
|
Nakayama M and Oshima M: Mutant p53 in
colon cancer. J Mol Cell Biol. 11:267–276. 2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Aubrey BJ, Strasser A and Kelly GL:
Tumor-suppressor functions of the TP53 pathway. Cold Spring Harb
Perspect Med. 6(6)2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Parrales A and Iwakuma T: Targeting
oncogenic mutant p53 for cancer therapy. Front Oncol.
5(288)2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Schulz-Heddergott R, Stark N, Edmunds SJ,
Li J, Conradi LC, Bohnenberger H, Ceteci F, Greten FR, Dobbelstein
M and Moll UM: Therapeutic ablation of gain-of-function mutant p53
in colorectal cancer inhibits Stat3-mediated tumor growth and
invasion. Cancer Cell. 34:298–314.e7. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Cooks T, Pateras IS, Jenkins LM, Patel KM,
Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG and Harris
CC: Mutant p53 cancers reprogram macrophages to tumor supporting
macrophages via exosomal miR-1246. Nat Commun.
9(771)2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Solomon H, Dinowitz N, Pateras IS, Cooks
T, Shetzer Y, Molchadsky A, Charni M, Rabani S, Koifman G, Tarcic
O, et al: Mutant p53 gain of function underlies high expression
levels of colorectal cancer stem cells markers. Oncogene.
37:1669–1684. 2018.PubMed/NCBI View Article : Google Scholar
|
34
|
Pires AS, Marques CR, Encarnação JC,
Abrantes AM, Marques IA, Laranjo M, Oliveira R, Casalta-Lopes JE,
Gonçalves AC, Sarmento-Ribeiro AB, et al: Ascorbic acid
chemosensitizes colorectal cancer cells and synergistically
inhibits tumor growth. Front Physiol. 9(911)2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Yin Y, Shen Q, Tao R, Chang W, Li R, Xie
G, Liu W, Zhang P and Tao K: Wee1 inhibition can suppress tumor
proliferation and sensitize p53 mutant colonic cancer cells to the
anticancer effect of irinotecan. Mol Med Rep. 17:3344–3349.
2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Terranova-Barberio M, Pecori B, Roca MS,
Imbimbo S, Bruzzese F, Leone A, Muto P, Delrio P, Avallone A,
Budillon A, et al: Synergistic antitumor interaction between
valproic acid, capecitabine and radiotherapy in colorectal cancer:
Critical role of p53. J Exp Clin Cancer Res. 36(177)2017.PubMed/NCBI View Article : Google Scholar
|
37
|
Zhang ZY, Hong D, Nam SH, Kim JM, Paik YH,
Joh JW, Kwon CH, Park JB, Choi GS, Jang KY, et al: SIRT1 regulates
oncogenesis via a mutant p53-dependent pathway in hepatocellular
carcinoma. J Hepatol. 62:121–130. 2015.PubMed/NCBI View Article : Google Scholar
|
38
|
Ye Z, Fang J, Dai S, Wang Y, Fu Z, Feng W,
Wei Q and Huang P: MicroRNA-34a induces a senescence-like change
via the down-regulation of SIRT1 and up-regulation of p53 protein
in human esophageal squamous cancer cells with a wild-type p53 gene
background. Cancer Lett. 370:216–221. 2016.PubMed/NCBI View Article : Google Scholar
|
39
|
Lee WY, Lee WT, Cheng CH, Chen KC, Chou
CM, Chung CH, Sun MS, Cheng HW, Ho MN and Lin CW: Repositioning
antipsychotic chlorpromazine for treating colorectal cancer by
inhibiting sirtuin 1. Oncotarget. 6:27580–27595. 2015.PubMed/NCBI View Article : Google Scholar
|
40
|
Tan YJ, Lee YT, Yeong KY, Petersen SH,
Kono K, Tan SC and Oon CE: Anticancer activities of a benzimidazole
compound through sirtuin inhibition in colorectal cancer. Future
Med Chem. 10:2039–2057. 2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Fraker PJ, King LE, Lill-Elghanian D and
Telford WG: Quantification of apoptotic events in pure and
heterogeneous populations of cells using the flow cytometer.
Methods Cell Biol. 46:57–76. 1995.PubMed/NCBI View Article : Google Scholar
|
42
|
Li D, Marchenko ND and Moll UM: SAHA shows
preferential cytotoxicity in mutant p53 cancer cells by
destabilizing mutant p53 through inhibition of the HDAC6-Hsp90
chaperone axis. Cell Death Differ. 18:1904–1913. 2011.PubMed/NCBI View Article : Google Scholar
|
43
|
Ryu HW, Shin DH, Lee DH, Choi J, Han G,
Lee KY and Kwon SH: HDAC6 deacetylates p53 at lysines 381/382 and
differentially coordinates p53-induced apoptosis. Cancer Lett.
391:162–171. 2017.PubMed/NCBI View Article : Google Scholar
|