Pathophysiology of hepatic Na+/H+ exchange (Review)
- Authors:
- Tingting Li
- Biguang Tuo
-
Affiliations: Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China - Published online on: June 12, 2020 https://doi.org/10.3892/etm.2020.8888
- Pages: 1220-1229
This article is mentioned in:
Abstract
Kraut JA and Madias NE: Treatment of acute metabolic acidosis: A pathophysiologic approach. Nat Rev Nephrol. 8:589–601. 2012.PubMed/NCBI View Article : Google Scholar | |
Putney LK, Denker SP and Barber DL: The changing face of the Na+/H+ exchanger, NHE1: Structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol. 42:527–552. 2002.PubMed/NCBI View Article : Google Scholar | |
Kondapalli KC, Prasad H and Rao R: An inside job: How endosomal Na(+)/H(+) exchangers link to autism and neurological disease. Front Cell Neurosci. 8(172)2014.PubMed/NCBI View Article : Google Scholar | |
Malo ME and Fliegel L: Physiological role and regulation of the Na+/H+ exchanger. Can J Physiol Pharmacol. 84:1081–1095. 2006.PubMed/NCBI View Article : Google Scholar | |
Gurney MA, Laubitz D, Ghishan FK and Kiela PR: Pathophysiology of Intestinal Na+/H+ exchange. Cell Mol Gastroenterol Hepatol. 3:27–40. 2017.PubMed/NCBI View Article : Google Scholar | |
Sardet C, Franchi A and Pouysségur J: Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell. 56:271–280. 1989.PubMed/NCBI View Article : Google Scholar | |
Xu H, Chen H, Li J, Zhao Y and Ghishan FK: Disruption of NHE8 expression impairs Leydig cell function in the testes. Am J Physiol Cell Physiol. 308:C330–C338. 2015.PubMed/NCBI View Article : Google Scholar | |
Denker SP and Barber DL: Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol. 159:1087–1096. 2002.PubMed/NCBI View Article : Google Scholar | |
Orlowski J and Grinstein S: Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch. 447:549–565. 2004.PubMed/NCBI View Article : Google Scholar | |
Zhao H, Carney KE, Falgoust L, Pan JW, Sun D and Zhang Z: Emerging roles of Na+/H+ exchangers in epilepsy and developmental brain disorders. Prog Neurobiol. 138-140:19–35. 2016.PubMed/NCBI View Article : Google Scholar | |
Malakooti J, Dahdal RY, Schmidt L, Layden TJ, Dudeja PK and Ramaswamy K: Molecular cloning, tissue distribution, and functional expression of the human Na(+)/H(+) exchanger NHE2. Am J Physiol. 277:G383–G390. 1999.PubMed/NCBI View Article : Google Scholar | |
Loo SY, Chang MK, Chua CS, Kumar AP, Pervaiz S and Clement MV: NHE-1: A promising target for novel anti-cancer therapeutics. Curr Pharm Des. 18:1372–1382. 2012.PubMed/NCBI View Article : Google Scholar | |
Kurata T, Rajendran V, Fan S, Ohta T, Numata M and Fushida S: NHE5 regulates growth factor signaling, integrin trafficking, and degradation in glioma cells. Clin Exp Metastasis. 36:527–538. 2019.PubMed/NCBI View Article : Google Scholar | |
Pescosolido MF, Stein DM, Schmidt M, El Achkar CM, Sabbagh M, Rogg JM, Tantravahi U, McLean RL, Liu JS, Poduri A, et al: Genetic and phenotypic diversity of NHE6 mutations in Christianson syndrome. Ann Neurol. 76:581–593. 2014.PubMed/NCBI View Article : Google Scholar | |
Nakamura N, Tanaka S, Teko Y, Mitsui K and Kanazawa H: Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem. 280:1561–1572. 2005.PubMed/NCBI View Article : Google Scholar | |
Ko M, Quiñones-Hinojosa A and Rao R: Emerging links between endosomal pH and cancer. Cancer Metastasis Rev: Apr 6, 2020 (Epub ahead of print). | |
Laczkó D, Rosztóczy A, Birkás K, Katona M, Rakonczay Z Jr, Tiszlavicz L, Róka R, Wittmann T, Hegyi P and Venglovecz V: Role of ion transporters in the bile acid-induced esophageal injury. Am J Physiol Gastrointest Liver Physiol. 311:G16–G31. 2016.PubMed/NCBI View Article : Google Scholar | |
Hosogi S, Miyazaki H, Nakajima K, Ashihara E, Niisato N, Kusuzaki K and Marunaka Y: An inhibitor of Na(+)/H(+) exchanger (NHE), ethyl isopropyl amiloride (EIPA), diminishes proliferation of MKN28 human gastric cancer cells by decreasing the cytosolic Cl(-) concentration via DIDS sensitive pathways. Cell Physiol Biochem. 30:1241–1253. 2012.PubMed/NCBI View Article : Google Scholar | |
Khan I and Khan K: Uncoupling of Carbonic Anhydrase from Na H exchanger 1 in Experimental Colitis: A Possible Mechanistic Link with Na H Exchanger. Biomolecules. 9(700)2019.PubMed/NCBI View Article : Google Scholar | |
Xu H, Li J, Chen H and Ghishan FK: NHE8 Deficiency Promotes Colitis-Associated Cancer in Mice via Expansion of Lgr5-Expressing Cells. Cell Mol Gastroenterol Hepatol. 7:19–31. 2018.PubMed/NCBI View Article : Google Scholar | |
Magalhães D, Cabral JM, Soares-da-Silva P and Magro F: Role of epithelial ion transports in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 310:G460–G476. 2016.PubMed/NCBI View Article : Google Scholar | |
Das S, Jayaratne R and Barrett KE: The role of ion transporters in the pathophysiology of infectious diarrhea. Cell Mol Gastroenterol Hepatol. 6:33–45. 2018.PubMed/NCBI View Article : Google Scholar | |
Cao L, Yuan Z, Liu M and Stock C: (Patho-)Physiology of Na+/H+ Exchangers (NHEs) in the Digestive System. Front Physiol. 10(1566)2020.PubMed/NCBI View Article : Google Scholar | |
Yong W: Image diagnosis of common liver lesions Image research and medical application(on the column). J Imaging Res Med Applic, 2018 (In Chinese). | |
Lowry SF and Brennan MF: Abnormal liver function during parenteral nutrition: Relation to infusion excess. J Surg Res. 26:300–307. 1979. | |
Laohapitakworn S, Thongbunchoo J, Nakkrasae LI, Krishnamra N and Charoenphandhu N: Parathyroid hormone (PTH) rapidly enhances CFTR-mediated HCO3- secretion in intestinal epithelium-like Caco-2 monolayer: A novel ion regulatory action of PTH. Am J Physiol Cell Physiol. 301:C137–C149. 2011.PubMed/NCBI View Article : Google Scholar | |
Xu H, Ghishan FK and Kiela PR: SLC9 Gene Family: Function, expression, and regulation. Compr Physiol. 8:555–583. 2018.PubMed/NCBI View Article : Google Scholar | |
Kemp G, Young H and Fliegel L: Structure and function of the human Na+/H+ exchanger isoform 1. Channels (Austin). 2:329–336. 2008.PubMed/NCBI View Article : Google Scholar | |
Fuster DG and Alexander RT: Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch. 466:61–76. 2014.PubMed/NCBI View Article : Google Scholar | |
Stock C and Schwab A: Role of the Na/H exchanger NHE1 in cell migration. Acta Physiol (Oxf). 187:149–157. 2006.PubMed/NCBI View Article : Google Scholar | |
Fliegel L: Structural and Functional Changes in the Na(+)/H(+) Exchanger Isoform 1, Induced by Erk1/2 Phosphorylation. Int J Mol Sci. 20(2378)2019.PubMed/NCBI View Article : Google Scholar | |
Fuster DG and Alexander RT: Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch. 466:61–76. 2014.PubMed/NCBI View Article : Google Scholar | |
Amith SR and Fliegel L: Regulation of the Na+/H+ Exchanger (NHE1) in Breast Cancer Metastasis. Cancer Res. 73:1259–1264. 2013.PubMed/NCBI View Article : Google Scholar | |
Lee CH, Cragoe EJ Jr and Edwards AM: Control of hepatocyte DNA synthesis by intracellular pH and its role in the action of tumor promoters. J Cell Physiol. 195:61–69. 2003.PubMed/NCBI View Article : Google Scholar | |
Aharonovitz O, Zaun HC, Balla T, York JD, Orlowski J and Grinstein S: Intracellular pH regulation by Na(+)/H(+) exchange requires phosphatidylinositol 4,5-bisphosphate. J Cell Biol. 150:213–224. 2000.PubMed/NCBI View Article : Google Scholar | |
Ahmed KH, Pelster B and Krumschnabel G: Signalling pathways involved in hypertonicity- and acidification-induced activation of Na+/H+ exchange in trout hepatocytes. J Exp Biol. 209:3101–3113. 2006.PubMed/NCBI View Article : Google Scholar | |
Haussinger D: Osmosensing and osmosignaling in the liver. Wiener medizinische Wochenschrift (1946). 158:549–552. 2008.PubMed/NCBI View Article : Google Scholar | |
Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E and Häussinger D: Functional significance of cell volume regulatory mechanisms. Physiol Rev. 78:247–306. 1998.PubMed/NCBI View Article : Google Scholar | |
Jo AO, Ryskamp DA, Phuong TT, Verkman AS, Yarishkin O, MacAulay N and Križaj D: TRPV4 and AQP4 channels synergistically regulate cell volume and calcium homeostasis in retinal Müller Glia. J Neurosci. 35:13525–13537. 2015.PubMed/NCBI View Article : Google Scholar | |
Lang F, Föller M, Lang K, Lang P, Ritter M, Vereninov A, Szabo I, Huber SM and Gulbins E: Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol. 428:209–225. 2007.PubMed/NCBI View Article : Google Scholar | |
Mongin AA: Volume-regulated anion channel - a frenemy within the brain. Pflugers Arch. 468:421–441. 2016.PubMed/NCBI View Article : Google Scholar | |
Lang PA, Graf D, Boini KM, Lang KS, Klingel K, Kandolf R and Lang F: Cell volume, the serum and glucocorticoid inducible kinase 1 and the liver. Z Gastroenterol. 49:713–719. 2011.PubMed/NCBI View Article : Google Scholar | |
Hoffmann EK, Lambert IH and Pedersen SF: Physiology of cell volume regulation in vertebrates. Physiol Rev. 89:193–277. 2009.PubMed/NCBI View Article : Google Scholar | |
Häussinger D and Lang F: Cell volume and hormone action. Trends Pharmacol Sci. 13:371–373. 1992.PubMed/NCBI View Article : Google Scholar | |
Lee MJ: Hormonal regulation of adipogenesis. Compr Physiol. 7:1151–1195. 2017.PubMed/NCBI View Article : Google Scholar | |
O'Connor McCourt M, Soley M, Hayden LJ and Hollenberg MD: Receptors for epidermal growth factor (urogastrone) and insulin in primary cultures of rat hepatocytes maintained in serum free medium. Biochem Cell Biol. 64:803–810. 1986.PubMed/NCBI View Article : Google Scholar | |
Dykes SS, Steffan JJ and Cardelli JA: Lysosome trafficking is necessary for EGF-driven invasion and is regulated by p38 MAPK and Na+/H+ exchangers. BMC Cancer. 17(672)2017.PubMed/NCBI View Article : Google Scholar | |
Steffan JJ, Williams BC, Welbourne T and Cardelli JA: HGF-induced invasion by prostate tumor cells requires anterograde lysosome trafficking and activity of Na+-H+ exchangers. J Cell Sci. 123:1151–1159. 2010.PubMed/NCBI View Article : Google Scholar | |
Coaxum SD, Blanton MG, Joyner A, Akter T, Bell PD, Luttrell LM, Raymond JR Sr, Lee MH, Blichmann PA, Garnovskaya MN, et al: Epidermal growth factor-induced proliferation of collecting duct cells from Oak Ridge polycystic kidney mice involves activation of Na+/H+ exchanger. Am J Physiol Cell Physiol. 307:C554–C560. 2014.PubMed/NCBI View Article : Google Scholar | |
Mead JE and Fausto N: Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism. Proc Natl Acad Sci USA. 86:1558–1562. 1989.PubMed/NCBI View Article : Google Scholar | |
Kaneko A, Hayashi N, Tanaka Y, Horimoto M, Ito T, Sasaki Y, Fusamoto H and Kamada T: Activation of Na+/H+ exchanger by hepatocyte growth factor in hepatocytes. Hepatology. 22:629–636. 1995.PubMed/NCBI | |
Goodrich AL and Suchy FJ: Na(+)-H+ exchange in basolateral plasma membrane vesicles from neonatal rat liver. Am J Physiol. 259:G334–G339. 1990.PubMed/NCBI View Article : Google Scholar | |
Dällenbach A, Marti U and Renner EL: Hepatocellular Na+/H+ exchange is activated early, transiently and at a posttranscriptional level during rat liver regeneration. Hepatology. 19:1290–1301. 1994.PubMed/NCBI View Article : Google Scholar | |
Moule SK and McGivan JD: Epidermal growth factor and cyclic AMP stimulate Na+/H+ exchange in isolated rat hepatocytes. Eur J Biochem. 187:677–682. 1990.PubMed/NCBI View Article : Google Scholar | |
Love MR, Palee S, Chattipakorn SC and Chattipakorn N: Effects of electrical stimulation on cell proliferation and apoptosis. J Cell Physiol. 233:1860–1876. 2018.PubMed/NCBI View Article : Google Scholar | |
Cardoso VG, Gonçalves GL, Costa-Pessoa JM, Thieme K, Lins BB, Casare FAM, de Ponte MC, Camara NOS and Oliveira-Souza M: Angiotensin II-induced podocyte apoptosis is mediated by endoplasmic reticulum stress/PKC-δ/p38 MAPK pathway activation and trough increased Na+/H+ exchanger isoform 1 activity. BMC Nephrol. 19(179)2018.PubMed/NCBI View Article : Google Scholar | |
Gaitantzi H, Meyer C, Rakoczy P, Thomas M, Wahl K, Wandrer F, Bantel H, Alborzinia H, Wölfl S, Ehnert S, et al: Ethanol sensitizes hepatocytes for TGF-β-triggered apoptosis. Cell Death Dis. 9(51)2018.PubMed/NCBI View Article : Google Scholar | |
Benedetti A, Di Sario A, Svegliati Baroni G and Jezequel AM: Transforming growth factor beta 1 increases the number of apoptotic bodies and decreases intracellular pH in isolated periportal and perivenular rat hepatocytes. Hepatology. 22:1488–1498. 1995.PubMed/NCBI | |
Martínez-Ansó E, Castillo JE, Díez J, Medina JF and Prieto J: Immunohistochemical detection of chloride/bicarbonate anion exchangers in human liver. Hepatology. 19:1400–1406. 1994.PubMed/NCBI | |
Marin JJ, Macias RI, Briz O, Banales JM and Monte MJ: Bile Acids in Physiology, Pathology and Pharmacology. Curr Drug Metab. 17:4–29. 2015.PubMed/NCBI View Article : Google Scholar | |
Marti U, Elsing C, Renner EL, Liechti-Gallati S and Reichen J: Differential expression of Na+ H(+)-antiporter mRNA in biliary epithelial cells and in hepatocytes. J Hepatol. 24:498–502. 1996.PubMed/NCBI View Article : Google Scholar | |
Elsing C, Voss A, Herrmann T, Kaiser I, Huebner CA and Schlenker T: Oxidative stress reduces Na+/H+ exchange (NHE) activity in a biliary epithelial cancer cell line (Mz-Cha-1). Anticancer Res. 31:459–465. 2011.PubMed/NCBI | |
Hirata K and Nathanson MH: Bile duct epithelia regulate biliary bicarbonate excretion in normal rat liver. Gastroenterology. 121:396–406. 2001.PubMed/NCBI View Article : Google Scholar | |
Hübner C, Stremmel W and Elsing C: Sodium, hydrogen exchange type 1 and bile ductular secretory activity in the guinea pig. Hepatology. 31:562–571. 2000.PubMed/NCBI View Article : Google Scholar | |
Roussa E, Bertram J, Berge KE, Labori KJ, Thévenod F and Raeder MG: Differential regulation of vacuolar H+ -ATPase and Na+/H+ exchanger 3 in rat cholangiocytes after bile duct ligation. Histochem Cell Biol. 125:419–428. 2006.PubMed/NCBI View Article : Google Scholar | |
Mennone A, Biemesderfer D, Negoianu D, Yang CL, Abbiati T, Schultheis PJ, Shull GE, Aronson PS and Boyer JL: Role of sodium/hydrogen exchanger isoform NHE3 in fluid secretion and absorption in mouse and rat cholangiocytes. Am J Physiol Gastrointest Liver Physiol. 280:G247–G254. 2001.PubMed/NCBI View Article : Google Scholar | |
Bazzini C, Bottà G, Meyer G, Baroni MD and Paulmichl M: The presence of NHE1 and NHE3 Na+-H+ exchangers and an apical cAMP-independent Cl- channel indicate that both absorptive and secretory functions are present in calf gall bladder epithelium. Exp Physiol. 86:571–583. 2001.PubMed/NCBI View Article : Google Scholar | |
Narins SC, Park EH, Ramakrishnan R, Garcia FU, Diven JN, Balin BJ, Hammond CJ, Sodam BR, Smith PR and Abedin MZ: Functional characterization of Na(+)/H(+) exchangers in primary cultures of prairie dog gallbladder. J Membr Biol. 197:123–134. 2004.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Wu S, Tian Y and Kong J: Phosphorylation and subcellular localization of Na+/H+ exchanger isoform 3 (NHE3) are associated with altered gallbladder absorptive function after formation of cholesterol gallstones. J Physiol Biochem. 73:133–139. 2017. | |
Saier MH Jr, Yen MR, Noto K, Tamang DG and Elkan C: The Transporter Classification Database: Recent advances. Nucleic Acids Res. 37 (Database):D274–D278. 2009.PubMed/NCBI View Article : Google Scholar | |
Giurgiu DI, Saunders-Kirkwood KD, Roslyn JJ and Abedin MZ: Sequential changes in biliary lipids and gallbladder ion transport during gallstone formation. Ann Surg. 225:382–390. 1997.PubMed/NCBI View Article : Google Scholar | |
Li X, Karki P, Lei L, Wang H and Fliegel L: Na+/H+ exchanger isoform 1 facilitates cardiomyocyte embryonic stem cell differentiation. Am J Physiol Heart Circ Physiol. 296:H159–H170. 2009.PubMed/NCBI View Article : Google Scholar | |
Manne V, Handa P and Kowdley KV: Pathophysiology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Clin Liver Dis. 22:23–37. 2018.PubMed/NCBI View Article : Google Scholar | |
Baffy G, Brunt EM and Caldwell SH: Hepatocellular carcinoma in non-alcoholic fatty liver disease: An emerging menace. J Hepatol. 56:1384–1391. 2012.PubMed/NCBI View Article : Google Scholar | |
Friedman SL, Neuschwander-Tetri BA, Rinella M and Sanyal AJ: Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 24:908–922. 2018.PubMed/NCBI View Article : Google Scholar | |
Prasad V, Chirra S, Kohli R and Shull GE: NHE1 deficiency in liver: Implications for non-alcoholic fatty liver disease. Biochem Biophys Res Commun. 450:1027–1031. 2014.PubMed/NCBI View Article : Google Scholar | |
Cipriani S, Mencarelli A, Palladino G and Fiorucci S: FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res. 51:771–784. 2010.PubMed/NCBI View Article : Google Scholar | |
Ma Y, Huang Y, Yan L, Gao M and Liu D: Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance. Pharm Res. 30:1447–1457. 2013.PubMed/NCBI View Article : Google Scholar | |
Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M, Adorini L, Sciacca CI, Clopton P, Castelloe E, et al: Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology. 145:574–82.e1. 2013.PubMed/NCBI View Article : Google Scholar | |
Tully DC, Rucker PV, Chianelli D, Williams J, Vidal A, Alper PB, Mutnick D, Bursulaya B, Schmeits J, Wu X, et al: Discovery of tropifexor (LJN452), a highly potent non-bile acid FXR agonist for the treatment of cholestatic liver diseases and nonalcoholic steatohepatitis (NASH). J Med Chem. 60:9960–9973. 2017.PubMed/NCBI View Article : Google Scholar | |
Baranowski M, Zabielski P, Blachnio Zabielska AU, Harasim E, Chabowski A and Gorski J: Insulin sensitizing effect of LXR agonist T0901317 in high fat fed rats is associated with restored muscle GLUT4 expression and insulin stimulated AS160 phosphorylation. Cell Physiol Biochem. 33:1047–1057. 2014.PubMed/NCBI View Article : Google Scholar | |
Ducheix S, Montagner A, Theodorou V, Ferrier L and Guillou H: The liver X receptor: A master regulator of the gut-liver axis and a target for non alcoholic fatty liver disease. Biochem Pharmacol. 86:96–105. 2013.PubMed/NCBI View Article : Google Scholar | |
Griffett K, Solt LA, El-Gendy BD, Kamenecka TM and Burris TP: A liver-selective LXR inverse agonist that suppresses hepatic steatosis. ACS Chem Biol. 8:559–567. 2013.PubMed/NCBI View Article : Google Scholar | |
Savage DB, Choi CS, Samuel VT, Liu ZX, Zhang D, Wang A, Zhang XM, Cline GW, Yu XX, Geisler JG, et al: Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest. 116:817–824. 2006.PubMed/NCBI View Article : Google Scholar | |
Dewidar B, Meyer C, Dooley S and Meindl Beinker AN: TGF beta in hepatic stellate cell activation and liver fibrogenesis-Updated 2019. Cells. 8(1419)2019.PubMed/NCBI View Article : Google Scholar | |
Yang C, Zeisberg M, Mosterman B, Sudhakar A, Yerramalla U, Holthaus K, Xu L, Eng F, Afdhal N and Kalluri R: Liver fibrosis: Insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology. 124:147–159. 2003.PubMed/NCBI View Article : Google Scholar | |
Li J, Zhao YR and Tian Z: Roles of hepatic stellate cells in acute liver failure: From the perspective of inflammation and fibrosis. World J Hepatol. 11:412–420. 2019.PubMed/NCBI View Article : Google Scholar | |
Tsuchida T and Friedman SL: Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 14:397–411. 2017.PubMed/NCBI View Article : Google Scholar | |
Mak KM, Leo MA and Lieber CS: Alcoholic liver injury in baboons: Transformation of lipocytes to transitional cells. Gastroenterology. 87:188–200. 1984.PubMed/NCBI | |
Chen Z, Jain A, Liu H, Zhao Z and Cheng K: Targeted drug delivery to hepatic stellate cells for the treatment of liver fibrosis. J Pharmacol Exp Ther. 370:695–702. 2019.PubMed/NCBI View Article : Google Scholar | |
Lan T, Kisseleva T and Brenner DA: Deficiency of NOX1 or NOX4 prevents liver inflammation and fibrosis in mice through inhibition of hepatic stellate cell activation. PLoS One. 10(e0129743)2015.PubMed/NCBI View Article : Google Scholar | |
Ou Q, Weng Y, Wang S, Zhao Y, Zhang F, Zhou J and Wu X: Silybin alleviates hepatic steatosis and fibrosis in NASH mice by inhibiting oxidative stress and involvement with the Nf-κB Pathway. Dig Dis Sci. 63:3398–3408. 2018.PubMed/NCBI View Article : Google Scholar | |
Syn WK, Agboola KM, Swiderska M, Michelotti GA, Liaskou E, Pang H, Xie G, Philips G, Chan IS, Karaca GF, et al: NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut. 61:1323–1329. 2012.PubMed/NCBI View Article : Google Scholar | |
Syn WK, Choi SS, Liaskou E, Karaca GF, Agboola KM, Oo YH, Mi Z, Pereira TA, Zdanowicz M, Malladi P, et al: Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology. 53:106–115. 2011.PubMed/NCBI View Article : Google Scholar | |
Grinstein S, Rotin D and Mason MJ: Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta. 988:73–97. 1989.PubMed/NCBI View Article : Google Scholar | |
Di Sario A, Baroni GS, Bendia E, D'Ambrosio L, Ridolfi F, Marileo JR, Jezequel AM and Benedetti A: Characterization of ion transport mechanisms regulating intracellular pH in hepatic stellate cells. Am J Physiol. 273:G39–G48. 1997.PubMed/NCBI View Article : Google Scholar | |
Trappoliere M, Caligiuri A, Schmid M, Bertolani C, Failli P, Vizzutti F, Novo E, di Manzano C, Marra F, Loguercio C, et al: Silybin, a component of sylimarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells. J Hepatol. 50:1102–1111. 2009.PubMed/NCBI View Article : Google Scholar | |
Di Sario A, Bendia E, Svegliati Baroni G, Ridolfi F, Bolognini L, Feliciangeli G, Jezequel AM, Orlandi F and Benedetti A: Intracellular pathways mediating Na+/H+ exchange activation by platelet-derived growth factor in rat hepatic stellate cells. Gastroenterology. 116:1155–1166. 1999.PubMed/NCBI View Article : Google Scholar | |
Svegliati-Baroni G, Di Sario A, Casini A, Ferretti G, D'Ambrosio L, Ridolfi F, Bolognini L, Salzano R, Orlandi F and Benedetti A: The Na+/H+ exchanger modulates the fibrogenic effect of oxidative stress in rat hepatic stellate cells. J Hepatol. 30:868–875. 1999.PubMed/NCBI View Article : Google Scholar | |
Svegliati Baroni G, D'Ambrosio L, Ferretti G, Casini A, Di Sario A, Salzano R, Ridolfi F, Saccomanno S, Jezequel AM and Benedetti A: Fibrogenic effect of oxidative stress on rat hepatic stellate cells. Hepatology. 27:720–726. 1998.PubMed/NCBI View Article : Google Scholar | |
Häussinger D and Schliess F: Osmotic induction of signaling cascades: Role in regulation of cell function. Biochem Biophys Res Commun. 255:551–555. 1999.PubMed/NCBI View Article : Google Scholar | |
Pendergrass WR, Angello JC, Kirschner MD and Norwood TH: The relationship between the rate of entry into S phase, concentration of DNA polymerase alpha, and cell volume in human diploid fibroblast-like monokaryon cells. Exp Cell Res. 192:418–425. 1991.PubMed/NCBI View Article : Google Scholar | |
Vairo G, Cocks BG, Cragoe EJ Jr and Hamilton JA: Selective suppression of growth factor-induced cell cycle gene expression by Na+/H+ antiport inhibitors. J Biol Chem. 267:19043–19046. 1992.PubMed/NCBI | |
Fontecave M, Lepoivre M, Elleingand E, Gerez C and Guittet O: Resveratrol, a remarkable inhibitor of ribonucleotide reductase. FEBS Lett. 421:277–279. 1998.PubMed/NCBI View Article : Google Scholar | |
Benedetti A, Di Sario A, Casini A, Ridolfi F, Bendia E, Pigini P, Tonnini C, D'Ambrosio L, Feliciangeli G, Macarri G, et al: Inhibition of the NA(+)/H(+) exchanger reduces rat hepatic stellate cell activity and liver fibrosis: An in vitro and in vivo study. Gastroenterology. 120:545–556. 2001.PubMed/NCBI View Article : Google Scholar | |
Huang Q, Li J, Zheng J and Wei A: The carcinogenic role of the Notch signaling pathway in the development of hepatocellular carcinoma. J Cancer. 10:1570–1579. 2019.PubMed/NCBI View Article : Google Scholar | |
Hardonnière K, Saunier E, Lemarié A, Fernier M, Gallais I, Héliès-Toussaint C, Mograbi B, Antonio S, Bénit P, Rustin P, et al: The environmental carcinogen benzo[a]pyrene induces a Warburg-like metabolic reprogramming dependent on NHE1 and associated with cell survival. Sci Rep. 6(30776)2016.PubMed/NCBI View Article : Google Scholar | |
Thyfault JP and Rector RS: Exercise Combats Hepatic Steatosis: Potential Mechanisms and Clinical Implications. Diabetes. 69:517–524. 2020.PubMed/NCBI View Article : Google Scholar | |
Harguindey S, Polo Orozco J, Alfarouk KO and Devesa J: Hydrogen ion dynamics of cancer and a new molecular, biochemical and metabolic approach to the etiopathogenesis and treatment of brain malignancies. Int J Mol Sci. 20(4278)2019.PubMed/NCBI View Article : Google Scholar | |
Kim SW, Cha MJ, Lee SK, Song BW, Jin X, Lee JM, Park JH and Lee JD: Curcumin treatment in combination with glucose restriction inhibits intracellular alkalinization and tumor growth in hepatoma cells. Int J Mol Sci. 20(2375)2019.PubMed/NCBI View Article : Google Scholar | |
Meima ME, Webb BA, Witkowska HE and Barber DL: The sodium-hydrogen exchanger NHE1 is an Akt substrate necessary for actin filament reorganization by growth factors. J Biol Chem. 284:26666–26675. 2009.PubMed/NCBI View Article : Google Scholar | |
Yang X, Wang D, Dong W, Song Z and Dou K: Over-expression of Na+/H+ exchanger 1 and its clinicopathologic significance in hepatocellular carcinoma. Med Oncol. 27:1109–1113. 2010.PubMed/NCBI View Article : Google Scholar | |
Yang X, Wang D, Dong W, Song Z and Dou K: Suppression of Na+/H+ exchanger 1 by RNA interference or amiloride inhibits human hepatoma cell line SMMC-7721 cell invasion. Med Oncol. 28:385–390. 2011.PubMed/NCBI View Article : Google Scholar | |
Yang X, Wang D, Dong W, Song Z and Dou K: Inhibition of Na(+)/H(+) exchanger 1 by 5-(N-ethyl-N-isopropyl) amiloride reduces hypoxia-induced hepatocellular carcinoma invasion and motility. Cancer Lett. 295:198–204. 2010.PubMed/NCBI View Article : Google Scholar | |
He X, Lee B and Jiang Y: Cell-ECM Interactions in Tumor Invasion. Adv Exp Med Biol. 936:73–91. 2016.PubMed/NCBI View Article : Google Scholar | |
Stüwe L, Müller M, Fabian A, Waning J, Mally S, Noël J, Schwab A and Stock C: pH dependence of melanoma cell migration: Protons extruded by NHE1 dominate protons of the bulk solution. J Physiol. 585:351–360. 2007.PubMed/NCBI View Article : Google Scholar | |
Reshkin SJ, Cardone RA and Harguindey S: : Na+-H+ exchanger, pH regulation and cancer. Recent Patents Anticancer Drug Discov. 8:85–99. 2013.PubMed/NCBI View Article : Google Scholar | |
Keurhorst D, Liashkovich I, Frontzek F, Nitzlaff S, Hofschröer V, Dreier R and Stock C: MMP3 activity rather than cortical stiffness determines NHE1-dependent invasiveness of melanoma cells. Cancer Cell Int. 19(285)2019.PubMed/NCBI View Article : Google Scholar | |
He B, Deng C, Zhang M, Zou D and Xu M: Reduction of intracellular pH inhibits the expression of VEGF in K562 cells after targeted inhibition of the Na+/H+ exchanger. Leuk Res. 31:507–514. 2007.PubMed/NCBI View Article : Google Scholar | |
Apte RS, Chen DS and Ferrara N: VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 176:1248–1264. 2019.PubMed/NCBI View Article : Google Scholar | |
Alfarouk KO: Tumor metabolism, cancer cell transporters, and microenvironmental resistance. J Enzyme Inhib Med Chem. 31:859–866. 2016.PubMed/NCBI View Article : Google Scholar | |
Gilkes DM, Semenza GL and Wirtz D: Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer. 14:430–439. 2014.PubMed/NCBI View Article : Google Scholar | |
Vaupel P, Kallinowski F and Okunieff P: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res. 49:6449–6465. 1989.PubMed/NCBI | |
Sun Y, Liu WZ, Liu T, Feng X, Yang N and Zhou HF: Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 35:600–604. 2015.PubMed/NCBI View Article : Google Scholar | |
Chen LC, Shibu MA, Liu CJ, Han CK, Ju DT, Chen PY, Viswanadha VP, Lai CH, Kuo WW and Huang CY: ERK1/2 mediates the lipopolysaccharide-induced upregulation of FGF-2, uPA, MMP-2, MMP-9 and cellular migration in cardiac fibroblasts. Chem Biol Interact. 306:62–69. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang JC, Chen SY, Wang M, Ko JL, Wu CL, Chen CC, Lin HW and Chang YY: Nickel-induced VEGF expression via regulation of Akt, ERK1/2, NFκB, and AMPK pathways in H460 cells. Environ Toxicol. 34:652–658. 2019.PubMed/NCBI View Article : Google Scholar | |
Yang X, Wang D, Dong W, Song Z and Dou K: Expression and modulation of Na(+) /H(+) exchanger 1 gene in hepatocellular carcinoma: A potential therapeutic target. J Gastroenterol Hepatol. 26:364–370. 2011.PubMed/NCBI View Article : Google Scholar | |
Xu J, Ji B, Wen G, Yang Y, Jin H, Liu X, Xie R, Song W, Song P, Dong H, et al: Na+/H+ exchanger 1, Na+/Ca2+ exchanger 1 and calmodulin complex regulates interleukin 6-mediated cellular behavior of human hepatocellular carcinoma. Carcinogenesis. 37:290–300. 2016.PubMed/NCBI View Article : Google Scholar | |
Huc L, Sparfel L, Rissel M, Dimanche-Boitrel MT, Guillouzo A, Fardel O and Lagadic-Gossmann D: Identification of Na+/H+ exchange as a new target for toxic polycyclic aromatic hydrocarbons. FASEB J. 18:344–346. 2004.PubMed/NCBI View Article : Google Scholar | |
Hardonnière K, Saunier E, Lemarié A, Fernier M, Gallais I, Héliès-Toussaint C, Mograbi B, Antonio S, Bénit P, Rustin P, et al: The environmental carcinogen benzo[a]pyrene induces a Warburg-like metabolic reprogramming dependent on NHE1 and associated with cell survival. Sci Rep. 6(30776)2016.PubMed/NCBI View Article : Google Scholar | |
Dendelé B, Tekpli X, Hardonnière K, Holme JA, Debure L, Catheline D, Arlt VM, Nagy E, Phillips DH, Ovrebø S, et al: Protective action of n-3 fatty acids on benzo[a]pyrene-induced apoptosis through the plasma membrane remodeling-dependent NHE1 pathway. Chem Biol Interact. 207:41–51. 2014.PubMed/NCBI View Article : Google Scholar | |
Wang J, Tian L, Khan MN, Zhang L, Chen Q, Zhao Y, Yan Q, Fu L and Liu J: Ginsenoside Rg3 sensitizes hypoxic lung cancer cells to cisplatin via blocking of NF-κB mediated epithelial-mesenchymal transition and stemness. Cancer Lett. 415:73–85. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang C, Liu L, Yu Y, Chen B, Tang C and Li X: Antitumor effects of ginsenoside Rg3 on human hepatocellular carcinoma cells. Mol Med Rep. 5:1295–1298. 2012.PubMed/NCBI View Article : Google Scholar | |
Zhou B, Wang J and Yan Z: Ginsenoside Rg3 attenuates hepatoma VEGF overexpression after hepatic artery embolization in an orthotopic transplantation hepatocellular carcinoma rat model. OncoTargets Ther. 7:1945–1954. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhou B, Yan Z, Liu R, Shi P, Qian S, Qu X, Zhu L, Zhang W and Wang J: Prospective Study of Transcatheter Arterial Chemoembolization (TACE) with Ginsenoside Rg3 versus TACE Alone for the Treatment of Patients with Advanced Hepatocellular Carcinoma. Radiology. 280:630–639. 2016.PubMed/NCBI View Article : Google Scholar | |
Li X, Tsauo J, Geng C, Zhao H, Lei X and Li X: Ginsenoside Rg3 Decreases NHE1 Expression via Inhibiting EGF-EGFR-ERK1/2-HIF-1 [Formula: see text] Pathway in Hepatocellular Carcinoma: A Novel Antitumor Mechanism. Am J Chin Med. 46:1915–1931. 2018.PubMed/NCBI View Article : Google Scholar | |
Kloeckner R, Ruckes C, Kronfeld K, Wörns MA, Weinmann A, Galle PR, Lang H, Otto G, Eichhorn W, Schreckenberger M, et al: Selective internal radiotherapy (SIRT) versus transarterial chemoembolization (TACE) for the treatment of intrahepatic cholangiocellular carcinoma (CCC): study protocol for a randomized controlled trial. Trials. 15(311)2014.PubMed/NCBI View Article : Google Scholar | |
Uchida D, Takaki A, Ishikawa H, Tomono Y, Kato H, Tsutsumi K, Tamaki N, Maruyama T, Tomofuji T, Tsuzaki R, et al: Oxidative stress balance is dysregulated and represents an additional target for treating cholangiocarcinoma. Free Radic Res. 50:732–743. 2016.PubMed/NCBI View Article : Google Scholar | |
Grek A and Arasi L: Acute liver failure. AACN Adv Crit Care. 27:420–429. 2016.PubMed/NCBI View Article : Google Scholar | |
Ezquerro S, Mocha F, Frühbeck G, Guzmán-Ruiz R, Valentí V, Mugueta C, Becerril S, Catalán V, Gómez-Ambrosi J, Silva C, et al: Ghrelin Reduces TNF-α-Induced Human Hepatocyte Apoptosis, Autophagy, and Pyroptosis: Role in Obesity-Associated NAFLD. J Clin Endocrinol Metab. 104:21–37. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu Z, Wang S, Zhou H, Yang Y and Zhang M: Na+/H+ exchanger mediates TNF-alpha-induced hepatocyte apoptosis via the calpain-dependent degradation of Bcl-xL. J Gastroenterol Hepatol. 24:879–885. 2009.PubMed/NCBI View Article : Google Scholar | |
Alexander RT, Dimke H and Cordat E: Proximal tubular NHEs: Sodium, protons and calcium? Am J Physiol Renal Physiol. 305:F229–F236. 2013.PubMed/NCBI View Article : Google Scholar | |
Shi M, Zhang T, Sun L, Luo Y, Liu DH, Xie ST, Song XY, Wang GF, Chen XL, Zhou BC and Zhang YZ: Calpain, Atg5 and Bak play important roles in the crosstalk between apoptosis and autophagy induced by influx of extracellular calcium. Apoptosis. 18:435–451. 2013.PubMed/NCBI View Article : Google Scholar | |
Huang C, Wang J, Chen Z, Wang Y and Zhang W: 2-phenylethynesulfonamide Prevents Induction of Pro-inflammatory Factors and Attenuates LPS-induced Liver Injury by Targeting NHE1-Hsp70 Complex in Mice. PLoS One. 8(e67582)2013.PubMed/NCBI View Article : Google Scholar | |
Ceccarelli S, Panera N, Mina M, Gnani D, De Stefanis C, Crudele A, Rychlicki C, Petrini S, Bruscalupi G, Agostinelli L, et al: LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease. Oncotarget. 6:41434–41452. 2015.PubMed/NCBI View Article : Google Scholar | |
Liu CL, Zhang X, Liu J, Wang Y, Sukhova GK, Wojtkiewicz GR, Liu T, Tang R, Achilefu S, Nahrendorf M, et al: Na+-H+ exchanger 1 determines atherosclerotic lesion acidification and promotes atherogenesis. Nat Commun. 10(3978)2019.PubMed/NCBI View Article : Google Scholar | |
Guan X, Hasan MN, Begum G, Kohanbash G, Carney KE, Pigott VM, Persson AI, Castro MG, Jia W and Sun D: Blockade of Na/H exchanger stimulates glioma tumor immunogenicity and enhances combinatorial TMZ and anti-PD-1 therapy. Cell Death Dis. 9(1010)2018.PubMed/NCBI View Article : Google Scholar | |
Rotstein OD, Houston K and Grinstein S: Control of cytoplasmic pH by Na+/H+ exchange in rat peritoneal macrophages activated with phorbol ester. FEBS Lett. 215:223–227. 1987.PubMed/NCBI View Article : Google Scholar | |
Ye Y, Jia X, Bajaj M and Birnbaum Y: Dapagliflozin Attenuates Na+/H+ Exchanger-1 in Cardiofibroblasts via AMPK Activation. Cardiovasc Drugs Ther. 32:553–558. 2018.PubMed/NCBI View Article : Google Scholar | |
Ryuichi O, Masafumi M and Hiroshi K: Localization, ion transport activity, and physiological function of mammalian organellar NHEs. Seikagaku. J Jpn Biochem Soc. 82:2010.PubMed/NCBI(In Japanese). | |
Karmazyn M: Pharmacology and clinical assessment of cariporide for the treatment coronary artery diseases. Expert Opin Investig Drugs. 9:1099–1108. 2000.PubMed/NCBI View Article : Google Scholar |