1
|
Seganfredo FB, Blume CA, Moehlecke M,
Giongo A, Casagrande DS, Spolidoro JVN, Padoin AV, Schaan BD and
Mottin CC: Weight-loss interventions and gut microbiota changes in
overweight and obese patients: A systematic review. Obes Rev.
18:832–851. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Ubeda C, Djukovic A and Isaac S: Roles of
the intestinal microbiota in pathogen protection. Clin Transl
Immunology. 6(e128)2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Matsumoto M, Kibe R, Ooga T, Aiba Y,
Kurihara S, Sawaki E, Koga Y and Benno Y: Impact of intestinal
microbiota on intestinal luminal metabolome. Sci Rep.
2(233)2012.PubMed/NCBI View Article : Google Scholar
|
4
|
Li Z, Quan G, Jiang X, Yang Y, Ding X,
Zhang D, Wang X, Hardwidge PR, Ren W and Zhu G: Effects of
metabolites derived from gut microbiota and hosts on pathogens.
Front Cell Infect Microbiol. 8(314)2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Lucas S, Omata Y, Hofmann J, Böttcher M,
Iljazovic A, Sarter K, Albrecht O, Schulz O, Krishnacoumar B,
Krönke G, et al: Short-chain fatty acids regulate systemic bone
mass and protect from pathological bone loss. Nat Commun.
9(55)2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Haghikia A, Jörg S, Duscha A, Berg J,
Manzel A, Waschbisch A, Hammer A, Lee DH, May C, Wilck N, et al:
Dietary fatty acids directly impact central nervous system
autoimmunity via the small intestine. Immunity. 44:951–953.
2016.PubMed/NCBI View Article : Google Scholar
|
7
|
D'Souza WN, Douangpanya J, Mu S, Jaeckel
P, Zhang M, Maxwell JR, Rottman JB, Labitzke K, Willee A, Beckmann
H, et al: Differing roles for short chain fatty acids and GPR43
agonism in the regulation of intestinal barrier function and immune
responses. PLoS One. 12(e0180190)2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Ojeda P, Bobe A, Dolan K, Leone V and
Martinez K: Nutritional modulation of gut microbiota-the impact on
metabolic disease pathophysiology. J Nutr Biochem. 28:191–200.
2016.PubMed/NCBI View Article : Google Scholar
|
9
|
DeGruttola AK, Low D, Mizoguchi A and
Mizoguchi E: Current understanding of dysbiosis in disease in human
and animal models. Inflamm Bowel Dis. 22:1137–1150. 2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Kverka M and Tlaskalova-Hogenova H:
Intestinal microbiota: Facts and fiction. Dig Dis. 35:139–147.
2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Birch JM, Ullman K, Struve T, Agger JF,
Hammer AS, Leijon M and Jensen HE: Investigation of the viral and
bacterial microbiota in intestinal samples from mink (Neovison
vison) with pre-weaning diarrhea syndrome using next generation
sequencing. PLoS One. 13(e0205890)2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Ji W, Zhu Y, Kan P, Cai Y, Wang Z, Wu Z
and Yang P: Analysis of intestinal microbial communities of
cerebral infarction and ischemia patients based on high throughput
sequencing technology and glucose and lipid metabolism. Mol Med
Rep. 16:5413–5417. 2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Arocho A, Chen B, Ladanyi M and Pan Q:
Validation of the 2-DeltaDeltaCt calculation as an alternate method
of data analysis for quantitative PCR of BCR-ABL P210 transcripts.
Diagn Mol Pathol. 15:56–61. 2006.PubMed/NCBI View Article : Google Scholar
|
14
|
Morsczeck C, Korenkov M, Nagelschmidt M,
Feher D and Schierholz JM: Total RNA-isolation of abdominal hernia
of rats for quantitative real-time reverse transcription (RT) PCR
assays. Prep Biochem Biotechnol. 38:87–93. 2008.PubMed/NCBI View Article : Google Scholar
|
15
|
Alcock J and Lin HC: Fatty acids from diet
and microbiota regulate energy metabolism. F1000Res.
4(738)2015.PubMed/NCBI View Article : Google Scholar
|
16
|
Candido FG, Valente FX, Grzeskowiak LM,
Moreira APB, Rocha DMUP and Alfenas RCG: Impact of dietary fat on
gut microbiota and low-grade systemic inflammation: Mechanisms and
clinical implications on obesity. Int J Food Sci Nutr. 69:125–143.
2018.PubMed/NCBI View Article : Google Scholar
|
17
|
de Pinho L, Andrade JM, Paraíso A, Filho
AB, Feltenberger JD, Guimarães AL, de Paula AM, Caldeira AP, de
Carvalho Botelho AC, Campagnole-Santos MJ and Sousa Santos SH: Diet
composition modulates expression of sirtuins and renin-angiotensin
system components in adipose tissue. Obesity (Silver Spring).
21:1830–1835. 2013.PubMed/NCBI View Article : Google Scholar
|
18
|
Liu JP, Zou WL, Chen SJ, Wei HY, Yin YN,
Zou YY and Lu FG: Effects of different diets on intestinal
microbiota and nonalcoholic fatty liver disease development. World
J Gastroenterol. 22:7353–7364. 2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Araujo JR, Tomas J, Brenner C and
Sansonetti PJ: Impact of high-fat diet on the intestinal microbiota
and small intestinal physiology before and after the onset of
obesity. Biochimie. 141:97–106. 2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Wang L, Jacobs JP, Lagishetty V, Yuan PQ,
Wu SV, Million M, Reeve JR Jr, Pisegna JR and Taché Y: High-protein
diet improves sensitivity to cholecystokinin and shifts the cecal
microbiome without altering brain inflammation in diet-induced
obesity in rats. Am J Physiol Regul Integr Comp Physiol.
313:R473–R486. 2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Campos-Nonato I, Hernandez L and Barquera
S: Effect of a high-protein diet versus standard-protein diet on
weight loss and biomarkers of metabolic syndrome: A randomized
clinical trial. Obes Facts. 10:238–251. 2017.PubMed/NCBI View Article : Google Scholar
|
22
|
da Rosa Lima T, Ávila ETP, Fraga GA, de
Souza Sena M, de Souza Dias AB, de Almeida PC, Dos Santos Trombeta
JC, Junior RCV, Damazo AS, Navalta JW, et al: Effect of
administration of high-protein diet in rats submitted to resistance
training. Eur J Nutr. 57:1083–1096. 2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Choi Y, Giovannucci E and Lee JE:
Glycaemic index and glycaemic load in relation to risk of
diabetes-related cancers: A meta-analysis. Br J Nutr.
108:1934–1947. 2012.PubMed/NCBI View Article : Google Scholar
|
24
|
Huang J, Fang YJ, Xu M, Luo H, Zhang NQ,
Huang WQ, Pan ZZ, Chen YM and Zhang CX: Carbohydrate, dietary
glycaemic index and glycaemic load, and colorectal cancer risk: A
case-control study in China. Br J Nutr. 119:937–948.
2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Dong JY, Zhang L, Zhang YH and Qin LQ:
Dietary glycaemic index and glycaemic load in relation to the risk
of type 2 diabetes: A meta-analysis of prospective cohort studies.
Br J Nutr. 106:1649–1654. 2011.PubMed/NCBI View Article : Google Scholar
|
26
|
Romaguera D, Angquist L, Du H, Jakobsen
MU, Forouhi NG, Halkjaer J, Feskens EJ, van der A DL, Masala G,
Steffen A, et al: Dietary determinants of changes in waist
circumference adjusted for body mass index-a proxy measure of
visceral adiposity. PLoS One. 5(e11588)2010.PubMed/NCBI View Article : Google Scholar
|
27
|
Campbell GJ, Senior AM and Bell-Anderson
KS: Metabolic effects of high glycaemic index diets: A systematic
review and meta-analysis of feeding studies in mice and rats.
Nutrients. 9(E646)2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Krusinska B, Kowalkowska J, Wadolowska L,
Wuenstel JW, Slowinska MA and Niedzwiedzka E: Fibre-related dietary
patterns: Socioeconomic barriers to adequate fibre intake in polish
adolescents. A short report. Nutrients. 9(E590)2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Murugesan S, Nirmalkar K, Hoyo-Vadillo C,
Garcia-Espitia M, Ramirez-Sanchez D and Garcia-Mena J: Gut
microbiome production of short-chain fatty acids and obesity in
children. Eur J Clin Microbiol Infect Dis. 37:621–625.
2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Tilg H and Moschen AR: Microbiota and
diabetes: An evolving relationship. Gut. 63:1513–1521.
2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Lu Y, Fan C, Li P, Lu Y, Chang X and Qi K:
Short chain fatty acids prevent high-fat-diet-induced obesity in
mice by regulating G protein-coupled receptors and gut microbiota.
Sci Rep. 6(37589)2016.PubMed/NCBI View Article : Google Scholar
|
32
|
Sanchez JI, Marzorati M, Grootaert C,
Baran M, Van Craeyveld V, Courtin CM, Broekaert WF, Delcour JA,
Verstraete W and Van de Wiele T: Arabinoxylan-oligosaccharides
(AXOS) affect the protein/carbohydrate fermentation balance and
microbial population dynamics of the simulator of human intestinal
microbial ecosystem. Microb Biotechnol. 2:101–113. 2009.PubMed/NCBI View Article : Google Scholar
|
33
|
van de Wouw M, Schellekens H, Dinan TG and
Cryan JF: Microbiota-gut-brain axis: Modulator of host metabolism
and appetite. J Nutr. 147:727–745. 2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Murakami K, Livingstone MB, Okubo H and
Sasaki S: Energy density of the diets of Japanese adults in
relation to food and nutrient intake and general and abdominal
obesity: A cross-sectional analysis from the 2012 national health
and nutrition survey, Japan. Br J Nutr. 117:161–169.
2017.PubMed/NCBI View Article : Google Scholar
|
35
|
Raynor HA and Vadiveloo M: Understanding
the relationship between food variety, food intake, and energy
balance. Curr Obes Rep. 7:68–75. 2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Brown AJ, Goldsworthy SM, Barnes AA,
Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn
I, Fraser NJ, et al: The Orphan G protein-coupled receptors GPR41
and GPR43 are activated by propionate and other short chain
carboxylic acids. J Biol Chem. 278:11312–11319. 2003.PubMed/NCBI View Article : Google Scholar
|
37
|
Blaut M: Gut microbiota and energy
balance: Role in obesity. Proc Nutr Soc. 74:227–234.
2015.PubMed/NCBI View Article : Google Scholar
|
38
|
Xiong Y, Miyamoto N, Shibata K, Valasek
MA, Motoike T, Kedzierski RM and Yanagisawa M: Short-chain fatty
acids stimulate leptin production in adipocytes through the G
protein-coupled receptor GPR41. Proc Natl Acad Sci USA.
101:1045–1050. 2004.PubMed/NCBI View Article : Google Scholar
|
39
|
Ma N, Tian Y, Wu Y and Ma X: Contributions
of the interaction between dietary protein and gut microbiota to
intestinal health. Curr Protein Pept Sci. 18:795–808.
2017.PubMed/NCBI View Article : Google Scholar
|