1
|
Levin M: The embryonic origins of
left-right asymmetry. Crit Rev Oral Biol Med. 15:197–206.
2004.PubMed/NCBI View Article : Google Scholar
|
2
|
Nakamura T and Hamada H: Left-right
patterning: Conserved and divergent mechanisms. Development.
139:3257–3262. 2012.PubMed/NCBI View Article : Google Scholar
|
3
|
Blum M and Ott T: Animal left-right
asymmetry. Curr Biol. 28:R301–R304. 2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Shapiro A, Davis S, Manion M and Briones
K: Primary ciliary dyskinesia (PCD). Am J Respir Crit Care Med.
198:P3–P4. 2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Deng H, Xia H and Deng S: Genetic basis of
human left-right asymmetry disorders. Expert Rev Mol Med.
16(e19)2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Lee L: Mechanisms of mammalian ciliary
motility: Insights from primary ciliary dyskinesia genetics. Gene.
473:57–66. 2011.PubMed/NCBI View Article : Google Scholar
|
7
|
Narasimhan V, Hjeij R, Vij S, Loges NT,
Wallmeier J, Koerner-Rettberg C, Werner C, Thamilselvam SK, Boey A,
Choksi SP, et al: Mutations in CCDC11, which encodes a coiled-coil
containing ciliary protein, causes situs inversus due to
dysmotility of monocilia in the left-right organizer. Hum Mutat.
36:307–318. 2015.PubMed/NCBI View Article : Google Scholar
|
8
|
Shapiro AJ, Zariwala MA, Ferkol T, Davis
SD, Sagel SD, Dell SD, Rosenfeld M, Olivier KN, Milla C, Daniel SJ,
et al: Diagnosis, monitoring, and treatment of primary ciliary
dyskinesia: PCD foundation consensus recommendations based on state
of the art review. Pediatr Pulmonol. 51:115–132. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Zanatta A, Zampieri F, Bonati MR, Frescura
C, Scattolin G, Stramare R and Thiene G: Situs inversus with
dextrocardia in a mummy case. Cardiovasc Pathol. 23:61–64.
2014.PubMed/NCBI View Article : Google Scholar
|
10
|
Knowles MR, Zariwala M and Leigh M:
Primary ciliary dyskinesia. Clin Chest Med. 37:449–461.
2016.PubMed/NCBI View Article : Google Scholar
|
11
|
Knowles MR, Daniels LA, Davis SD, Zariwala
MA and Leigh MW: Primary ciliary dyskinesia. Recent advances in
diagnostics, genetics, and characterization of clinical disease. Am
J Respir Crit Care Med. 188:913–922. 2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Boon M, Jorissen M, Proesmans M and De
Boeck K: Primary ciliary dyskinesia, an orphan disease. Eur J
Pediatr. 172:151–162. 2013.PubMed/NCBI View Article : Google Scholar
|
13
|
Wallmeier J, Frank D, Shoemark A,
Nöthe-Menchen T, Cindric S, Olbrich H, Loges NT, Aprea I, Dougherty
GW, Pennekamp P, et al: De novo mutations in FOXJ1 result in a
motile ciliopathy with hydrocephalus and randomization of
left/right body asymmetry. Am J Hum Genet. 105:1030–1039.
2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Bonnefoy S, Watson CM, Kernohan KD, Lemos
M, Hutchinson S, Poulter JA, Crinnion LA, Berry I, Simmonds J,
Vasudevan P, et al: Biallelic mutations in LRRC56, encoding a
protein associated with intraflagellar transport, cause mucociliary
clearance and laterality defects. Am J Hum Genet. 103:727–739.
2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Vetrini F, D'Alessandro LC, Akdemir ZC,
Braxton A, Azamian MS, Eldomery MK, Miller K, Kois C, Sack V, Shur
N, et al: Bi-allelic mutations in PKD1L1 are associated with
laterality defects in humans. Am J Hum Genet. 99:886–893.
2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Fassad MR, Shoemark A, le Borgne P, Koll
F, Patel M, Dixon M, Hayward J, Richardson C, Frost E, Jenkins L,
et al: C11orf70 mutations disrupting the intraflagellar
transport-dependent assembly of multiple axonemal dyneins cause
primary ciliary dyskinesia. Am J Hum Genet. 102:956–972.
2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Ta-Shma A, Hjeij R, Perles Z, Dougherty
GW, Abu Zahira I, Letteboer SJF, Antony D, Darwish A, Mans DA,
Spittler S, et al: Homozygous loss-of-function mutations in MNS1
cause laterality defects and likely male infertility. PLoS Genet.
14(e1007602)2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Perles Z, Moon S, Ta-Shma A, Yaacov B,
Francescatto L, Edvardson S, Rein AJ, Elpeleg O and Katsanis N: A
human laterality disorder caused by a homozygous deleterious
mutation in MMP21. J Med Genet. 52:840–847. 2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Paff T, Loges NT, Aprea I, Wu K, Bakey Z,
Haarman EG, Daniels JMA, Sistermans EA, Bogunovic N, Dougherty GW,
et al: Mutations in PIH1D3 cause X-linked primary ciliary
dyskinesia with outer and inner dynein arm defects. Am J Hum Genet.
100:160–168. 2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Loges NT, Antony D, Maver A, Deardorff MA,
Güleç EY, Gezdirici A, Nöthe-Menchen T, Höben IM, Jelten L, Frank
D, et al: Recessive DNAH9 loss-of-function mutations cause
laterality defects and subtle respiratory ciliary-beating defects.
Am J Hum Genet. 103:995–1008. 2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Wallmeier J, Shiratori H, Dougherty GW,
Edelbusch C, Hjeij R, Loges NT, Menchen T, Olbrich H, Pennekamp P,
Raidt J, et al: TTC25 deficiency results in defects of the outer
dynein arm docking machinery and primary ciliary dyskinesia with
left-right body asymmetry randomization. Am J Hum Genet.
99:460–469. 2016.PubMed/NCBI View Article : Google Scholar
|
22
|
Imtiaz F, Allam R, Ramzan K and Al-Sayed
M: Variation in DNAH1 may contribute to primary ciliary dyskinesia.
BMC Med Genet. 16(14)2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Onoufriadis A, Paff T, Antony D, Shoemark
A, Micha D, Kuyt B, Schmidts M, Petridi S, Dankert-Roelse JE,
Haarman EG, et al: Splice-site mutations in the axonemal outer
dynein arm docking complex gene CCDC114 cause primary ciliary
dyskinesia. Am J Hum Genet. 92:88–98. 2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Chen X, Deng S, Xu H, Hou D, Hu P, Yang Y,
Wen J, Deng H and Yuan L: Novel and recurring NOTCH3 mutations in
two Chinese patients with CADASIL. Neurodegener Dis. 19:35–42.
2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Li H: Aligning sequence reads, clone
sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v2
(q-bio.GN). Oxford University Press, 2013.
|
26
|
Van der Auwera GA, Carneiro MO, Hartl C,
Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen
D, Thibault J, et al: From FastQ data to high confidence variant
calls: The Genome Analysis Toolkit best practices pipeline. Curr
Protoc Bioinformatics. 43:11.10.1–11.10.33. 2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Cingolani P, Platts A, Wang le L, Coon M,
Nguyen T, Wang L, Land SJ, Lu X and Ruden DM: A program for
annotating and predicting the effects of single nucleotide
polymorphisms, SnpEff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 6:80–92.
2012.PubMed/NCBI View Article : Google Scholar
|
28
|
Sherry ST, Ward MH, Kholodov M, Baker J,
Phan L, Smigielski EM and Sirotkin K: dbSNP: The NCBI database of
genetic variation. Nucleic Acids Res. 29:308–311. 2001.PubMed/NCBI View Article : Google Scholar
|
29
|
1000 Genomes Project Consortium. Auton A,
Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL,
McCarthy S, McVean GA, et al: A global reference for human genetic
variation. Nature. 526:68–74. 2015.PubMed/NCBI View Article : Google Scholar
|
30
|
NHLBI Exome Sequencing Project (ESP):
Exome Variant Server. http://evs.gs.washington.edu/EVS/.
Accessed 31 January, 2018.
|
31
|
Chen X, Yuan L, Xu H, Hu P, Yang Y, Guo Y,
Guo Z and Deng H: Novel GLI3 mutations in Chinese patients with
non-syndromic post-axial polydactyly. Curr Mol Med. 19:228–235.
2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Schwarz JM, Cooper DN, Schuelke M and
Seelow D: MutationTaster2: Mutation prediction for the
deep-sequencing age. Nat Methods. 11:361–362. 2014.PubMed/NCBI View Article : Google Scholar
|
33
|
Mi H, Muruganujan A, Ebert D, Huang X and
Thomas PD: PANTHER version 14: More genomes, a new PANTHER GO-slim
and improvements in enrichment analysis tools. Nucleic Acids Res.
47:D419–D426. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Choi Y and Chan AP: PROVEAN web server: A
tool to predict the functional effect of amino acid substitutions
and indels. Bioinformatics. 31:2745–2747. 2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Xiao H, Yuan L, Xu H, Yang Z, Huang F,
Song Z, Yang Y, Zeng C and Deng H: Novel and recurring
disease-causing NF1 variants in two Chinese families with
neurofibromatosis type 1. J Mol Neurosci. 65:557–563.
2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Sayers EW, Beck J, Brister JR, Bolton EE,
Canese K, Comeau DC, Funk K, Ketter A, Kim S, Kimchi A, et al:
Database resources of the National Center for Biotechnology
Information. Nucleic Acids Res. 48:D9–D16. 2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Chen Q, Yuan L, Deng X, Yang Z, Zhang S,
Deng S, Lu H and Deng H: A missense variant p.Ala117Ser in the
transthyretin gene of a Han Chinese family with familial amyloid
polyneuropathy. Mol Neurobiol. 55:4911–4917. 2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Burland TG: DNASTAR's Lasergene sequence
analysis software. Methods Mol Biol. 132:71–91. 2000.PubMed/NCBI View Article : Google Scholar
|
39
|
Xiang Q, Cao Y, Xu H, Guo Y, Yang Z, Xu L,
Yuan L and Deng H: Identification of novel pathogenic ABCA4
variants in a Han Chinese family with Stargardt disease. Biosci
Rep. 39(BSR20180872)2019.PubMed/NCBI View Article : Google Scholar
|
40
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
41
|
Xiao H, Guo Y, Yi J, Xia H, Xu H, Yuan L,
Hu P, Yang Z, He Z, Lu H and Deng H: Identification of a novel
keratin 9 missense mutation in a Chinese family with epidermolytic
palmoplantar keratoderma. Cell Physiol Biochem. 46:1919–1929.
2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Norris DP: Cilia, calcium and the basis of
left-right asymmetry. BMC Biol. 10(102)2012.PubMed/NCBI View Article : Google Scholar
|
43
|
Huang S, Xu W, Su B and Luo L: Distinct
mechanisms determine organ left-right asymmetry patterning in an
uncoupled way. Bioessays. 36:293–304. 2014.PubMed/NCBI View Article : Google Scholar
|
44
|
Mercola M: Left-right asymmetry: Nodal
points. J Cell Sci. 116:3251–3257. 2003.PubMed/NCBI View Article : Google Scholar
|
45
|
Reiter JF and Leroux MR: Genes and
molecular pathways underpinning ciliopathies. Nat Rev Mol Cell
Biol. 18:533–547. 2017.PubMed/NCBI View Article : Google Scholar
|
46
|
Ishikawa T: Axoneme structure from motile
cilia. Cold Spring Harb Perspect Biol. 9(a028076)2017.PubMed/NCBI View Article : Google Scholar
|
47
|
Fliegauf M, Benzing T and Omran H: When
cilia go bad: Cilia defects and ciliopathies. Nat Rev Mol Cell
Biol. 8:880–893. 2007.PubMed/NCBI View Article : Google Scholar
|
48
|
Mitchison HM and Valente EM: Motile and
non-motile cilia in human pathology: From function to phenotypes. J
Pathol. 241:294–309. 2017.PubMed/NCBI View Article : Google Scholar
|
49
|
Hjeij R, Onoufriadis A, Watson CM, Slagle
CE, Klena NT, Dougherty GW, Kurkowiak M, Loges NT, Diggle CP,
Morante NF, et al: CCDC151 mutations cause primary ciliary
dyskinesia by disruption of the outer dynein arm docking complex
formation. Am J Hum Genet. 95:257–274. 2014.PubMed/NCBI View Article : Google Scholar
|
50
|
Ibañez-Tallon I, Heintz N and Omran H: To
beat or not to beat: Roles of cilia in development and disease. Hum
Mol Genet. 12:R27–R35. 2003.PubMed/NCBI View Article : Google Scholar
|
51
|
Eley L, Yates LM and Goodship JA: Cilia
and disease. Curr Opin Genet Dev. 15:308–314. 2005.PubMed/NCBI View Article : Google Scholar
|
52
|
Li P, He Y, Cai G, Xiao F, Yang J, Li Q
and Chen X: CCDC114 is mutated in patient with a complex phenotype
combining primary ciliary dyskinesia, sensorineural deafness, and
renal disease. J Hum Genet. 64:39–48. 2019.PubMed/NCBI View Article : Google Scholar
|
53
|
Chen H, Huang X, Yuan L, Xia H, Xu H, Yang
Y, Zheng W and Deng H: A homozygous parkin p.G284R mutation in a
Chinese family with autosomal recessive juvenile parkinsonism.
Neurosci Lett. 624:100–104. 2016.PubMed/NCBI View Article : Google Scholar
|
54
|
Wu DH and Singaraja RR: Loss-of-function
mutations in CCDC114 cause primary ciliary dyskinesia. Clin Genet.
83:526–527. 2013.PubMed/NCBI View Article : Google Scholar
|
55
|
Knowles MR, Leigh MW, Ostrowski LE, Huang
L, Carson JL, Hazucha MJ, Yin W, Berg JS, Davis SD, Dell SD, et al:
Exome sequencing identifies mutations in CCDC114 as a cause of
primary ciliary dyskinesia. Am J Hum Genet. 92:99–106.
2013.PubMed/NCBI View Article : Google Scholar
|