Protein acetylation and deacetylation: An important regulatory modification in gene transcription (Review)
- Authors:
- Can Xia
- Yu Tao
- Mingshan Li
- Tuanjie Che
- Jing Qu
-
Affiliations: Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China, Laboratory of Precision Medicine and Translational Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu 215153, P.R. China - Published online on: July 29, 2020 https://doi.org/10.3892/etm.2020.9073
- Pages: 2923-2940
-
Copyright: © Xia et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Marsh JA and Forman-Kay JD: Sequence determinants of compaction in intrinsically disordered proteins. Biophysical J. 98:2383–2390. 2010.PubMed/NCBI View Article : Google Scholar | |
Bah A and Forman-Kay JD: Modulation of intrinsically disordered protein function by post-translational modifications. J Biol Chem. 291:6696–6705. 2016.PubMed/NCBI View Article : Google Scholar | |
Adaniya SM, O-Uchi J, Cypress MW, Kusakari Y and Jhun BS: Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology. Am J Physiol Cell Physiol. 316:C583–C604. 2019.PubMed/NCBI View Article : Google Scholar | |
Ametzazurra A, Larrea E, Civeira MP, Prieto J and Aldabe R: Implication of human N-alpha-acetyltransferase 5 in cellular proliferation and carcinogenesis. Oncogene. 27:7296–7306. 2008.PubMed/NCBI View Article : Google Scholar | |
Christensen DG, Baumgartner JT, Xie X, Jew KM, Basisty N, Schilling B, Kuhn ML and Wolfe AJ: Mechanisms, detection, and relevance of protein acetylation in prokaryotes. mBio. 10:e02708–18. 2019.PubMed/NCBI View Article : Google Scholar | |
Drazic A, Myklebust LM, Ree R and Arnesen T: The world of protein acetylation. Biochim Biophys Acta. 1864:1372–1401. 2016.PubMed/NCBI View Article : Google Scholar | |
Verdin E and Ott M: 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol. 16:258–264. 2015.PubMed/NCBI View Article : Google Scholar | |
Lee TY, Hsu JB, Lin FM, Chang WC, Hsu PC and Huang HD: N-Ace: Using solvent accessibility and physicochemical properties to identify protein N-acetylation sites. J Comput Chem. 31:2759–2771. 2010.PubMed/NCBI View Article : Google Scholar | |
Hollebeke J, Van Damme P and Gevaert K: N-terminal acetylation and other functions of Nalpha-acetyltransferases. Biol Chem. 393:291–298. 2012.PubMed/NCBI View Article : Google Scholar | |
Thao S, Chen CS, Zhu H and Escalante-Semerena JC: Nepsilon-lysine acetylation of a bacterial transcription factor inhibits Its DNA-binding activity. PLoS One. 5(e15123)2010.PubMed/NCBI View Article : Google Scholar | |
Yang XJ and Gregoire S: Metabolism, cytoskeleton and cellular signalling in the grip of protein Nepsilon- and O-acetylation. EMBO Rep. 8:556–562. 2007.PubMed/NCBI View Article : Google Scholar | |
Allfrey VG, Faulkner R and Mirsky AE: Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA. 51:786–794. 1964.PubMed/NCBI View Article : Google Scholar | |
Verdone L, Caserta M and Di Mauro E: Role of histone acetylation in the control of gene expression. Biochem Cell Biol. 83:344–353. 2005.PubMed/NCBI View Article : Google Scholar | |
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV and Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 325:834–840. 2009.PubMed/NCBI View Article : Google Scholar | |
Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, et al: New nomenclature for chromatin-modifying enzymes. Cell. 131:633–636. 2007.PubMed/NCBI View Article : Google Scholar | |
Li P, Ge J and Li H: Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat Rev Cardiol. 17:96–115. 2020.PubMed/NCBI View Article : Google Scholar | |
Song L, Wang G, Malhotra A, Deutscher MP and Liang W: Reversible acetylation on Lys501 regulates the activity of RNase II. Nucleic Acids Res. 44:1979–1988. 2016.PubMed/NCBI View Article : Google Scholar | |
Sterner DE and Berger SL: Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 64:435–459. 2000.PubMed/NCBI View Article : Google Scholar | |
Ruhlmann F, Windhof-Jaidhauser IM, Menze C, Beißbarth T, Bohnenberger H, Ghadimi M and Dango S: The prognostic capacities of CBP and p300 in locally advanced rectal cancer. World J Surg Oncol. 17(224)2019.PubMed/NCBI View Article : Google Scholar | |
Narita T, Weinert BT and Choudhary C: Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol. 20:156–174. 2019.PubMed/NCBI View Article : Google Scholar | |
Hwang CS, Shemorry A and Varshavsky A: N-terminal acetylation of cellular proteins creates specific degradation signals. Science. 327:973–977. 2010.PubMed/NCBI View Article : Google Scholar | |
Vetting MW, S de Carvalho LP, Yu M, Hegde SS, Magnet S, Roderick SL and Blanchard JS: Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys. 433:212–226. 2005.PubMed/NCBI View Article : Google Scholar | |
Ruiz-Garcia AB, Sendra R, Galiana M, Pamblanco M, Perez-Ortin JE and Tordera V: HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyltransferase enzyme specific for free histone H4. J Biol Chem. 273:12599–12605. 1998.PubMed/NCBI View Article : Google Scholar | |
Miskiewicz K, Jose LE, Bento-Abreu A, Fislage M, Taes I, Kasprowicz J, Swerts J, Sigrist S, Versées W, Robberecht W and Verstreken P: ELP3 controls active zone morphology by acetylating the ELKS family member Bruchpilot. Neuron. 72:776–788. 2011.PubMed/NCBI View Article : Google Scholar | |
Sampath V, Liu B, Tafrov S, Srinivasan M, Rieger R, Chen EI and Sternglanz R: Biochemical characterization of Hpa2 and Hpa3, two small closely related acetyltransferases from Saccharomyces cerevisiae. J Biol Chem. 288:21506–21513. 2013.PubMed/NCBI View Article : Google Scholar | |
Sapountzi V and Cote J: MYST-family histone acetyltransferases: Beyond chromatin. Cell Mol Life Sci. 68:1147–1156. 2011.PubMed/NCBI View Article : Google Scholar | |
Reiter C, Heise F, Chung HR and Ehrenhofer-Murray AE: A link between Sas2-mediated H4 K16 acetylation, chromatin assembly in S-phase by CAF-I and Asf1, and nucleosome assembly by Spt6 during transcription. FEMS Yeast Res. 15(fov073)2015.PubMed/NCBI View Article : Google Scholar | |
Church M, Smith KC, Alhussain MM, Pennings S and Fleming AB: Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed FLO1 gene. Nucleic Acids Res. 45:4413–4430. 2017.PubMed/NCBI View Article : Google Scholar | |
Yan Y, Barlev NA, Haley RH, Berger SL and Marmorstein R: Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol Cell. 6:1195–1205. 2000.PubMed/NCBI View Article : Google Scholar | |
Wang F, Marshall CB and Ikura M: Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: Structural and functional versatility in target recognition. Cell Mol Life Sci. 70:3989–4008. 2013.PubMed/NCBI View Article : Google Scholar | |
Hu LI, Lima BP and Wolfe AJ: Bacterial protein acetylation: The dawning of a new age. Mol Microbiol. 77:15–21. 2010.PubMed/NCBI View Article : Google Scholar | |
Pelletier N, Champagne N, Stifani S and Yang XJ: MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene. 21:2729–2740. 2002.PubMed/NCBI View Article : Google Scholar | |
Rokudai S, Laptenko O, Arnal SM, Taya Y, Kitabayashi I and Prives C: MOZ increases p53 acetylation and premature senescence through its complex formation with PML. Proc Natl Acad Sci USA. 110:3895–3900. 2013.PubMed/NCBI View Article : Google Scholar | |
Fournier M, Orpinell M, Grauffel C, Scheer E, Garnier JM, Ye T, Chavant V, Joint M, Esashi F, Dejaegere A, et al: KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification. Nat Commun. 7(13227)2016.PubMed/NCBI View Article : Google Scholar | |
Bao X, Liu H, Liu X, Ruan K, Zhang Y, Zhang Z, Hu Q, Liu Y, Akram S, Zhang J, et al: Mitosis-specific acetylation tunes Ran effector binding for chromosome segregation. J Mol Cell Biol. 10:18–32. 2018.PubMed/NCBI View Article : Google Scholar | |
Ghosh TK, Aparicio-Sanchez JJ, Buxton S, Ketley A, Mohamed T, Rutland CS, Loughna S and Brook JD: Acetylation of TBX5 by KAT2B and KAT2A regulates heart and limb development. J Mol Cell Cardiol. 114:185–198. 2018.PubMed/NCBI View Article : Google Scholar | |
Cheng X, Ma X, Zhu Q, Song D, Ding X, Li L, Jiang X, Wang X, Tian R, Su H, et al: Pacer is a mediator of mTORC1 and GSK3-TIP60 signaling in regulation of autophagosome maturation and lipid metabolism. Mol Cell. 73:788–802.e7. 2019.PubMed/NCBI View Article : Google Scholar | |
Miotto B and Struhl K: HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev. 22:2633–2638. 2008.PubMed/NCBI View Article : Google Scholar | |
Yuan H, Rossetto D, Mellert H, Dang W, Srinivasan M, Johnson J, Hodawadekar S, Ding EC, Speicher K, Abshiru N, et al: MYST protein acetyltransferase activity requires active site lysine autoacetylation. EMBO J. 31:58–70. 2012.PubMed/NCBI View Article : Google Scholar | |
Chang R, Zhang Y, Zhang P and Zhou Q: Snail acetylation by histone acetyltransferase p300 in lung cancer. Thoracic Cancer. 8:131–137. 2017.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Cui J, Xue F, Zhang C, Mei Z, Wang Y, Bi M, Shan D, Meredith A, Li H and Xu ZQ: Pokemon (FBI-1) interacts with Smad4 to repress TGF-β-induced transcriptional responses. Biochim Biophys Acta. 1849:270–281. 2015.PubMed/NCBI View Article : Google Scholar | |
Cazzalini O, Sommatis S, Tillhon M, Dutto I, Bachi A, Rapp A, Nardo T, Scovassi AI, Necchi D, Cardoso MC, et al: CBP and p300 acetylate PCNA to link its degradation with nucleotide excision repair synthesis. Nucleic Acids Res. 42:8433–8448. 2014.PubMed/NCBI View Article : Google Scholar | |
Senf SM, Sandesara PB, Reed SA and Judge AR: p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. Am J Physiol Cell Physiol. 300:C1490–C1501. 2011.PubMed/NCBI View Article : Google Scholar | |
Lee K and Seo PJ: The HAF2 protein shapes histone acetylation levels of PRR5 and LUX loci in Arabidopsis. Planta. 248:513–518. 2018.PubMed/NCBI View Article : Google Scholar | |
Nakakura T, Nemoto T, Suzuki T, Asano-Hoshino A, Tanaka H, Arisawa K, Nishijima Y, Kiuchi Y and Hagiwara H: Adrenalectomy facilitates ATAT1 expression and alpha-tubulin acetylation in ACTH-producing corticotrophs. Cell Tissue Res. 366:363–370. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Shi X, Li Y, Kim BJ, Jia J, Huang Z, Yang T, Fu X, Jung SY, Wang Y, et al: Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell. 31:143–151. 2008.PubMed/NCBI View Article : Google Scholar | |
Wu H, Moshkina N, Min J, Zeng H, Joshua J, Zhou MM and Plotnikov AN: Structural basis for substrate specificity and catalysis of human histone acetyltransferase 1. Proc Natl Acad Sci USA. 109:8925–8930. 2012.PubMed/NCBI View Article : Google Scholar | |
de Ruijter AJ, van Gennip AH, Caron HN, Kemp S and van Kuilenburg AB: Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem J. 370:737–749. 2003.PubMed/NCBI View Article : Google Scholar | |
Banik D, Moufarrij S and Villagra A: Immunoepigenetics combination therapies: An overview of the role of HDACs in cancer immunotherapy. Int J Mol Sci. 20(2241)2019.PubMed/NCBI View Article : Google Scholar | |
Parra M: Class IIa HDACs-new insights into their functions in physiology and pathology. FEBS J. 282:1736–1744. 2015.PubMed/NCBI View Article : Google Scholar | |
Muller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, Winzer KJ, Dietel M, Weichert W and Denkert C: Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer-overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer. 13(215)2013.PubMed/NCBI View Article : Google Scholar | |
Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S and Jackson SP: Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol. 17:1144–1151. 2010.PubMed/NCBI View Article : Google Scholar | |
Saito S, Zhuang Y, Suzuki T, Ota Y, Bateman ME, Alkhatib AL, Morris GF and Lasky JA: HDAC8 inhibition ameliorates pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 316:L175–L186. 2019.PubMed/NCBI View Article : Google Scholar | |
Winbanks CE, Wang B, Beyer C, Koh P, White L, Kantharidis P and Gregorevic P: TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. J Biol Chem. 286:13805–13814. 2011.PubMed/NCBI View Article : Google Scholar | |
Cho Y, Sloutsky R, Naegle KM and Cavalli V: Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell. 155:894–908. 2013.PubMed/NCBI View Article : Google Scholar | |
Bradley EW, Carpio LR, Olson EN and Westendorf JJ: Histone deacetylase 7 (Hdac7) suppresses chondrocyte proliferation and β-catenin activity during endochondral ossification. J Biol Chem. 290:118–126. 2015.PubMed/NCBI View Article : Google Scholar | |
Hu Y, Sun L, Tao S, Dai M, Wang Y, Li Y and Wu J: Clinical significance of HDAC9 in hepatocellular carcinoma. Cell Mol Biol (Noisy-le-Grand). 65:23–28. 2019.PubMed/NCBI | |
Bitler BG, Wu S, Park PH, Hai Y, Aird KM, Wang Y, Zhai Y, Kossenkov AV, Vara-Ailor A, Rauscher FJ III, et al: ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat Cell Biol. 19:962–973. 2017.PubMed/NCBI View Article : Google Scholar | |
Radhakrishnan R, Li Y, Xiang S, Yuan F, Yuan Z, Telles E, Fang J, Coppola D, Shibata D, Lane WS, et al: Histone deacetylase 10 regulates DNA mismatch repair and may involve the deacetylation of MutS homolog 2. J Biol Chem. 290:22795–22804. 2015.PubMed/NCBI View Article : Google Scholar | |
Zerr P, Palumbo-Zerr K, Huang J, Tomcik M, Sumova B, Distler O, Schett G and Distler JH: Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis. Ann Rheum Dis. 75:226–233. 2016.PubMed/NCBI View Article : Google Scholar | |
Yuan Q, Zhan L, Zhou QY, Zhang LL, Chen XM, Hu XM and Yuan XC: SIRT2 regulates microtubule stabilization in diabetic cardiomyopathy. Eur J Pharmacol. 764:554–561. 2015.PubMed/NCBI View Article : Google Scholar | |
Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX and Finkel T: A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA. 105:14447–14452. 2008.PubMed/NCBI View Article : Google Scholar | |
Jeong SM, Xiao C, Finley LW, Lahusen T, Souza AL, Pierce K, Li YH, Wang X, Laurent G, German NJ, et al: SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell. 23:450–463. 2013.PubMed/NCBI View Article : Google Scholar | |
Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, Guo A, Gut P, Sahu AK, Li B, et al: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 18:920–933. 2013.PubMed/NCBI View Article : Google Scholar | |
Kaluski S, Portillo M, Besnard A, Stein D, Einav M, Zhong L, Ueberham U, Arendt T, Mostoslavsky R, Sahay A and Toiber D: Neuroprotective functions for the histone Deacetylase SIRT6. Cell Rep. 18:3052–3062. 2017.PubMed/NCBI View Article : Google Scholar | |
Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, et al: SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature. 487:114–118. 2012.PubMed/NCBI View Article : Google Scholar | |
Yuan L, Chen X, Cheng L, Rao M, Chen K, Zhang N, Meng J, Li M, Yang LT, Yang PC, et al: HDAC11 regulates interleukin-13 expression in CD4+T cells in the heart. J Mol Cell Cardiol. 122:1–10. 2018.PubMed/NCBI View Article : Google Scholar | |
Sahakian E, Chen J, Powers JJ, Chen X, Maharaj K, Deng SL, Achille AN, Lienlaf M, Wang HW, Cheng F, et al: Essential role for histone deacetylase 11 (HDAC11) in neutrophil biology. J Leukoc Biol. 102:475–486. 2017.PubMed/NCBI View Article : Google Scholar | |
Chatterjee SS, Saj A, Gocha T, Murphy M, Gonsalves FC, Zhang X, Hayward P, Akgöl Oksuz B, Shen SS, Madar A, et al: Inhibition of β-catenin-TCF1 interaction delays differentiation of mouse embryonic stem cells. J Cell Biol. 211:39–51. 2015.PubMed/NCBI View Article : Google Scholar | |
Abu-Elmagd M, Robson L, Sweetman D, Hadley J, Francis-West P and Munsterberg A: Wnt/Lef1 signaling acts via Pitx2 to regulate somite myogenesis. Dev Biol. 337:211–219. 2010.PubMed/NCBI View Article : Google Scholar | |
Wapenaar H and Dekker FJ: Histone acetyltransferases: Challenges in targeting bi-substrate enzymes. Clin Epigenetics. 8(59)2016.PubMed/NCBI View Article : Google Scholar | |
Chen GD, Yu WD and Chen XP: SirT1 activator represses the transcription of TNFα in THP1 cells of a sepsis model via deacetylation of H4K16. Mol Med Rep. 14:5544–5550. 2016.PubMed/NCBI View Article : Google Scholar | |
Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC, et al: SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 452:492–496. 2008.PubMed/NCBI View Article : Google Scholar | |
Kim TK and Shiekhattar R: Architectural and functional commonalities between enhancers and promoters. Cell. 162:948–959. 2015.PubMed/NCBI View Article : Google Scholar | |
Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA and Wysocka J: A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 470:279–283. 2011.PubMed/NCBI View Article : Google Scholar | |
Pradeepa MM, Grimes GR, Kumar Y, Olley G, Taylor GC, Schneider R and Bickmore WA: Histone H3 globular domain acetylation identifies a new class of enhancers. Nat Genet. 48:681–686. 2016.PubMed/NCBI View Article : Google Scholar | |
Pradeepa MM: Causal role of histone acetylations in enhancer function. Transcription. 8:40–47. 2017.PubMed/NCBI View Article : Google Scholar | |
Dhar S, Gursoy-Yuzugullu O, Parasuram R and Price BD: The tale of a tail: Histone H4 acetylation and the repair of DNA breaks. Philos Trans R Soc Lond B Biol Sci. 372(20160284)2017.PubMed/NCBI View Article : Google Scholar | |
Noguchi C, Singh T, Ziegler MA, Peake JD, Khair L, Aza A, Nakamura TM and Noguchi E: The NuA4 acetyltransferase and histone H4 acetylation promote replication recovery after topoisomerase I-poisoning. Epigenetics Chromatin. 12(24)2019.PubMed/NCBI View Article : Google Scholar | |
Vadla R, Chatterjee N and Haldar D: Cellular environment controls the dynamics of histone H3 lysine 56 acetylation in response to DNA damage in mammalian cells. J Biosci. 45(19)2020.PubMed/NCBI | |
Koprinarova M, Schnekenburger M and Diederich M: Role of histone acetylation in cell cycle regulation. Curr Top Med Chem. 16:732–744. 2016.PubMed/NCBI View Article : Google Scholar | |
Gao FH, Hu XH, Li W, Liu H, Zhang YJ, Guo ZY, Xu MH, Wang ST, Jiang B, Liu F, et al: Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc. BMC Cancer. 10(610)2010.PubMed/NCBI View Article : Google Scholar | |
Kim E, Bisson WH, Löhr CV, Williams DE, Ho E, Dashwood RH and Rajendran P: Histone and non-histone targets of dietary Deacetylase inhibitors. Curr Top Med Chem. 16:714–731. 2016.PubMed/NCBI View Article : Google Scholar | |
Glozak MA, Sengupta N, Zhang X and Seto E: Acetylation and deacetylation of non-histone proteins. Gene. 363:15–23. 2005.PubMed/NCBI View Article : Google Scholar | |
Suzuki M, Ikeda A and Bartlett JD: Sirt1 overexpression suppresses fluoride-induced p53 acetylation to alleviate fluoride toxicity in ameloblasts responsible for enamel formation. Arch Toxicol. 92:1283–1293. 2018.PubMed/NCBI View Article : Google Scholar | |
Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E and Yao TP: p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20:1331–1340. 2001.PubMed/NCBI View Article : Google Scholar | |
Iyer NG, Xian J, Chin SF, Bannister AJ, Daigo Y, Aparicio S, Kouzarides T and Caldas C: p300 is required for orderly G1/S transition in human cancer cells. Oncogene. 26:21–29. 2007.PubMed/NCBI View Article : Google Scholar | |
Shi D, Dai C, Qin J and Gu W: Negative regulation of the p300-p53 interplay by DDX24. Oncogene. 35:528–536. 2016.PubMed/NCBI View Article : Google Scholar | |
Morton DJ, Patel D, Joshi J, Hunt A, Knowell AE and Chaudhary J: ID4 regulates transcriptional activity of wild type and mutant p53 via K373 acetylation. Oncotarget. 8:2536–2549. 2017.PubMed/NCBI View Article : Google Scholar | |
Ou HL and Schumacher B: DNA damage responses and p53 in the aging process. Blood. 131:488–495. 2018.PubMed/NCBI View Article : Google Scholar | |
Miyajima C, Kawarada Y, Inoue Y, Suzuki C, Mitamura K, Morishita D, Ohoka N, Imamura T and Hayashi H: Transcriptional Coactivator TAZ negatively regulates tumor suppressor p53 activity and cellular senescence. Cells. 9(171)2020.PubMed/NCBI View Article : Google Scholar | |
Reed SM and Quelle DE: p53 Acetylation: Regulation and consequences. Cancers. 7:30–69. 2014.PubMed/NCBI View Article : Google Scholar | |
Shan W, Jiang Y, Yu H, Huang Q, Liu L, Guo X, Li L, Mi Q, Zhang K and Yang Z: HDAC2 overexpression correlates with aggressive clinicopathological features and DNA-damage response pathway of breast cancer. Am J Cancer Res. 7:1213–1226. 2017.PubMed/NCBI | |
Zhang L, Kang W, Lu X, Ma S, Dong L and Zou B: Weighted gene co-expression network analysis and connectivity map identifies lovastatin as a treatment option of gastric cancer by inhibiting HDAC2. Gene. 681:15–25. 2019.PubMed/NCBI View Article : Google Scholar | |
Brandl A, Wagner T, Uhlig KM, Knauer SK, Stauber RH, Melchior F, Schneider G, Heinzel T and Krämer OH: Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress. J Mol Cell Biol. 4:284–293. 2012.PubMed/NCBI View Article : Google Scholar | |
Li D, Marchenko ND and Moll UM: SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ. 18:1904–1913. 2011.PubMed/NCBI View Article : Google Scholar | |
Marrogi AJ, Khan MA, van Gijssel HE, Welsh JA, Rahim H, Demetris AJ, Kowdley KV, Hussain SP, Nair J, Bartsch H, et al: Oxidative stress and p53 mutations in the carcinogenesis of iron overload-associated hepatocellular carcinoma. J Natl Cancer Inst. 93:1652–1655. 2001.PubMed/NCBI View Article : Google Scholar | |
Zhou Y, Que KT, Zhang Z, Yi ZJ, Zhao PX, You Y, Gong JP and Liu ZJ: Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. Cancer Med. 7:4012–4022. 2018.PubMed/NCBI View Article : Google Scholar | |
Tu W, Zhang Q, Liu Y, Han L, Wang Q, Chen P, Zhang S, Wang A and Zhou X: Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol. 347:60–69. 2018.PubMed/NCBI View Article : Google Scholar | |
Wingelhofer B, Neubauer HA, Valent P, Han X, Constantinescu SN, Gunning PT, Müller M and Moriggl R: Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia. 32:1713–1726. 2018.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Wu R, Chen HZ, Xiao Q, Wang WJ, He JP, Li XX, Yu XW, Li L, Wang P, et al: Enhancement of hypothalamic STAT3 acetylation by nuclear receptor Nur77 dictates leptin sensitivity. Diabetes. 64:2069–2081. 2015.PubMed/NCBI View Article : Google Scholar | |
Zheng J, van de Veerdonk FL, Crossland KL, Smeekens SP, Chan CM, Al Shehri T, Abinun M, Gennery AR, Mann J, Lendrem DW, et al: Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC). Eur J Immunol. 45:2834–2846. 2015.PubMed/NCBI View Article : Google Scholar | |
Ma L, Huang C, Wang XJ, Xin DE, Wang LS, Zou QC, Zhang YS, Tan MD, Wang YM, Zhao TC, et al: Lysyl oxidase 3 is a dual-specificity enzyme involved in STAT3 Deacetylation and Deacetylimination modulation. Mol Cell. 65:296–309. 2017.PubMed/NCBI View Article : Google Scholar | |
Hansen DV, Hanson JE and Sheng M: Microglia in Alzheimer's disease. J Cell Biol. 217:459–472. 2018.PubMed/NCBI View Article : Google Scholar | |
Dani M, Wood M, Mizoguchi R, Fan Z, Walker Z, Morgan R, Hinz R, Biju M, Kuruvilla T, Brooks DJ and Edison P: Microglial activation correlates in vivo with both tau and amyloid in Alzheimer's disease. Brain. 141:2740–2754. 2018.PubMed/NCBI View Article : Google Scholar | |
Eufemi M, Cocchiola R, Romaniello D, Correani V, Di Francesco L, Fabrizi C, Maras B and Schininà ME: Acetylation and phosphorylation of STAT3 are involved in the responsiveness of microglia to beta amyloid. Neurochem Int. 81:48–56. 2015.PubMed/NCBI View Article : Google Scholar | |
Xu YS, Liang JJ, Wang Y, Zhao XJ, Xu L, Xu YY, Zou QC, Zhang JM, Tu CE, Cui YG, et al: STAT3 undergoes acetylation-dependent mitochondrial translocation to regulate pyruvate metabolism. Sci Rep. 6(39517)2016.PubMed/NCBI View Article : Google Scholar | |
Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC and Levy DE: Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science. 324:1713–1716. 2009.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Huang Y, Liu J, Zhang J, Xu M, You Z, Peng C, Gong Z and Liu W: Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB. EMBO Rep. 21(e48335)2020.PubMed/NCBI View Article : Google Scholar | |
Bao J, Zheng L, Zhang Q, Li X, Zhang X, Li Z, Bai X, Zhang Z, Huo W, Zhao X, et al: Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia. Protein Cell. 7:417–433. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Wang J, Zhou Z, Park JE, Wang L, Wu S, Sun X, Lu L, Wang T, Lin Q, et al: Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors. Autophagy. 14:1043–1059. 2018.PubMed/NCBI View Article : Google Scholar | |
Brijmohan AS, Batchu SN, Majumder S, Alghamdi TA, Thieme K, McGaugh S, Liu Y, Advani SL, Bowskill BB, Kabir MG, et al: HDAC6 inhibition promotes transcription factor EB activation and is protective in experimental kidney disease. Front Pharmacol. 9(34)2018.PubMed/NCBI View Article : Google Scholar | |
She A, Kurtser I, Reis SA, Hennig K, Lai J, Lang A, Zhao WN, Mazitschek R, Dickerson BC, Herz J and Haggarty SJ: Selectivity and kinetic requirements of HDAC inhibitors as progranulin enhancers for treating frontotemporal dementia. Cell Chem Biol. 24:892–906.e5. 2017.PubMed/NCBI View Article : Google Scholar | |
Manickavinayaham S, Velez-Cruz R, Biswas AK, Bedford E, Klein BJ, Kutateladze TG, Liu B, Bedford MT and Johnson DG: E2F1 acetylation directs p300/CBP-mediated histone acetylation at DNA double-strand breaks to facilitate repair. Nat Commun. 10(4951)2019.PubMed/NCBI View Article : Google Scholar | |
Chen L, Wei T, Si X, Wang Q, Li Y, Leng Y, Deng A, Chen J, Wang G, Zhu S and Kang J: Lysine acetyltransferase GCN5 potentiates the growth of non-small cell lung cancer via promotion of E2F1, cyclin D1, and cyclin E1 expression. J Biol Chem. 288:14510–14521. 2013.PubMed/NCBI View Article : Google Scholar | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009.PubMed/NCBI View Article : Google Scholar | |
Lin Y, Dong C and Zhou BP: Epigenetic regulation of EMT: The snail story. Curr Pharm Des. 20:1698–1705. 2014.PubMed/NCBI View Article : Google Scholar | |
Hsu DS, Wang HJ, Tai SK, Chou CH, Hsieh CH, Chiu PH, Chen NJ and Yang MH: Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell. 26:534–548. 2014.PubMed/NCBI View Article : Google Scholar | |
Xu W, Liu H, Liu ZG, Wang HS, Zhang F, Wang H, Zhang J, Chen JJ, Huang HJ, Tan Y, et al: Histone deacetylase inhibitors upregulate Snail via Smad2/3 phosphorylation and stabilization of Snail to promote metastasis of hepatoma cells. Cancer Lett. 420:1–13. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang L, Shan X, Chen Q, Xu D, Fan X, Yu M, Yan Q and Liu J: Downregulation of HDAC3 by ginsenoside Rg3 inhibits epithelial-mesenchymal transition of cutaneous squamous cell carcinoma through c-Jun acetylation. J Cell Physiol. 234:22207–22219. 2019.PubMed/NCBI View Article : Google Scholar | |
McMahon SB: MYC and the control of apoptosis. Cold Spring Harb Perspect Med. 4(a014407)2014.PubMed/NCBI View Article : Google Scholar | |
Kenneth NS, Ramsbottom BA, Gomez-Roman N, Marshall L, Cole PA and White RJ: TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc Natl Acad Sci USA. 104:14917–14922. 2007.PubMed/NCBI View Article : Google Scholar | |
Mao B, Zhao G, Lv X, Chen HZ, Xue Z, Yang B, Liu DP and Liang CC: Sirt1 deacetylates c-Myc and promotes c-Myc/Max association. Int J Biochem Cell Biol. 43:1573–1581. 2011.PubMed/NCBI View Article : Google Scholar | |
Bhadury J, Nilsson LM, Muralidharan SV, Green LC, Li Z, Gesner EM, Hansen HC, Keller UB, McLure KG and Nilsson JA: BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma. Proc Natl Acad Sci USA. 111:E2721–E2730. 2014.PubMed/NCBI View Article : Google Scholar | |
Nebbioso A, Carafa V, Conte M, Tambaro FP, Abbondanza C, Martens J, Nees M, Benedetti R, Pallavicini I, Minucci S, et al: c-Myc modulation and acetylation is a key HDAC inhibitor target in cancer. Clin Cancer Res. 23:2542–2555. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang F, Wang Z, Li D and Chen Q: Identification and characterization of a Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae) Thermotolerance-related gene: Bx-HSP90. Int J Mol Sci. 13:8819–8833. 2012.PubMed/NCBI View Article : Google Scholar | |
Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB and Yao TP: HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 18:601–607. 2005.PubMed/NCBI View Article : Google Scholar | |
Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K, Cotter RJ, Felts S, Toft D, Karnitz L, et al: An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell. 25:151–159. 2007.PubMed/NCBI View Article : Google Scholar | |
Meng Q, Chen X, Sun L, Zhao C, Sui G and Cai L: Carbamazepine promotes Her-2 protein degradation in breast cancer cells by modulating HDAC6 activity and acetylation of Hsp90. Mol Cell Biochem. 348:165–171. 2011.PubMed/NCBI View Article : Google Scholar | |
Rahimi N and Costello CE: Emerging roles of post-translational modifications in signal transduction and angiogenesis. Proteomics. 15:300–309. 2015.PubMed/NCBI View Article : Google Scholar | |
Yan MS, Turgeon PJ, Man HJ, Dubinsky MK, Ho JJD, El-Rass S, Wang YD, Wen XY and Marsden PA: Acetyltransferase 7 (KAT7)-dependent intragenic histone acetylation regulates endothelial Histone cell gene regulation. J Biol Chem. 293:4381–4402. 2018.PubMed/NCBI View Article : Google Scholar | |
Alomer RM, da Silva EML, Chen J, Piekarz KM, McDonald K, Sansam CG, Sansam CL and Rankin S: Esco1 and Esco2 regulate distinct cohesin functions during cell cycle progression. Proc Natl Acad Sci USA. 114:9906–9911. 2017.PubMed/NCBI View Article : Google Scholar | |
Rowland BD, Roig MB, Nishino T, Kurze A, Uluocak P, Mishra A, Beckouët F, Underwood P, Metson J, Imre R, et al: Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity. Mol Cell. 33:763–774. 2009.PubMed/NCBI View Article : Google Scholar | |
Gallinari P, Di Marco S, Jones P, Pallaoro M and Steinkuhler C: HDACs, histone deacetylation and gene transcription: From molecular biology to cancer therapeutics. Cell Res. 17:195–211. 2007.PubMed/NCBI View Article : Google Scholar | |
Schlesinger J, Schueler M, Grunert M, Fischer JJ, Zhang Q, Krueger T, Lange M, Tönjes M, Dunkel I and Sperling SR: The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet. 7(e1001313)2011.PubMed/NCBI View Article : Google Scholar | |
Leszczynska KB, Foskolou IP, Abraham AG, Anbalagan S, Tellier C, Haider S, Span PN, O'Neill EE, Buffa FM and Hammond EM: Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT. J Clin Invest. 125:2385–2398. 2015.PubMed/NCBI View Article : Google Scholar | |
Vadvalkar SS, Matsuzaki S, Eyster CA, Giorgione JR, Bockus LB, Kinter CS, Kinter M and Humphries KM: Decreased mitochondrial pyruvate transport activity in the diabetic heart: Role of mitochondrial pyruvate carrier 2 (MPC2) Acetylation. J Biol Chem. 292:4423–4433. 2017.PubMed/NCBI View Article : Google Scholar | |
Hu H, Zhu W, Qin J, Chen M, Gong L, Li L, Liu X, Tao Y, Yin H, Zhou H, et al: Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology. 65:515–528. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Wang F, Bao X and Fu L: Systematic analysis of lysine acetylome reveals potential functions of lysine acetylation in Shewanella baltica, the specific spoilage organism of aquatic products. J Proteomics. 205(103419)2019.PubMed/NCBI View Article : Google Scholar | |
Chen J, Rong X, Fan G, Li S and Li Q: Effects of different concentrations of putrescine on proliferation, migration and apoptosis of human skin fibroblasts. Nan Fang Yi Ke Da Xue Xue Bao. 35:758–762. 2015.PubMed/NCBI(In Chinese). | |
Mo R, Yang M, Chen Z, Cheng Z, Yi X, Li C, He C, Xiong Q, Chen H, Wang Q and Ge F: Acetylome analysis reveals the involvement of lysine acetylation in photosynthesis and carbon metabolism in the model cyanobacterium Synechocystis sp. PCC 6803. J Proteome Res. 14:1275–1286. 2015.PubMed/NCBI View Article : Google Scholar | |
Yu BJ, Kim JA, Moon JH, Ryu SE and Pan JG: The diversity of lysine-acetylated proteins in Escherichia coli. J Microbiol Biotechnol. 18:1529–1536. 2008.PubMed/NCBI | |
Savoia M, Cencioni C, Mori M, Atlante S, Zaccagnini G, Devanna P, Di Marcotullio L, Botta B, Martelli F, Zeiher AM, et al: P300/CBP-associated factor regulates transcription and function of isocitrate dehydrogenase 2 during muscle differentiation. FASEB J. 33:4107–4123. 2019.PubMed/NCBI View Article : Google Scholar | |
Baeza J, Smallegan MJ and Denu JM: Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem Sci. 41:231–244. 2016.PubMed/NCBI View Article : Google Scholar | |
Wagner GR and Hirschey MD: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol Cell. 54:5–16. 2014.PubMed/NCBI View Article : Google Scholar | |
Ronowska A, Szutowicz A, Bielarczyk H, Gul-Hinc S, Klimaszewska-Łata J, Dyś A, Zyśk M and Jankowska-Kulawy A: The regulatory effects of Acetyl-CoA distribution in the healthy and diseased brain. Front Cell Neurosci. 12(169)2018.PubMed/NCBI View Article : Google Scholar | |
Zaini MA, Muller C, de Jong TV, Ackermann T, Hartleben G, Kortman G, Gührs KH, Fusetti F, Krämer OH, Guryev V and Calkhoven CF: A p300 and SIRT1 regulated acetylation switch of C/EBPα controls mitochondrial function. Cell Rep. 22:497–511. 2018.PubMed/NCBI View Article : Google Scholar | |
Priante G, Gianesello L, Ceol M, Del Prete D and Anglani F: Cell death in the kidney. Int J Mol Sci. 20(3598)2019.PubMed/NCBI View Article : Google Scholar | |
De Rasmo D, Signorile A, De Leo E, Polishchuk EV, Ferretta A, Raso R, Russo S, Polishchuk R, Emma F and Bellomo F: Mitochondrial dynamics of proximal tubular epithelial cells in Nephropathic Cystinosis. Int J Mol Sci. 21(192)2019.PubMed/NCBI View Article : Google Scholar | |
Silva Junior G, Liborio AB, Mota RM, Abreu KLS, Silva AEB, Silva SMHA and Daher EF: Acute kidney injury in AIDS: Frequency, RIFLE classification and outcome. Brazilian J Med Biol Res. 43:1102–1108. 2010.PubMed/NCBI View Article : Google Scholar | |
Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD and Clermont G: Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol. 26:2231–2238. 2015.PubMed/NCBI View Article : Google Scholar | |
Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C, West J, Korotchenko VN, McDermott L, Day BW, et al: Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol. 24:943–953. 2013.PubMed/NCBI View Article : Google Scholar | |
Ranganathan P, Hamad R, Mohamed R, Jayakumar C, Muthusamy T and Ramesh G: Histone deacetylase-mediated silencing of AMWAP expression contributes to cisplatin nephrotoxicity. Kidney Int. 89:317–326. 2016.PubMed/NCBI View Article : Google Scholar | |
Fan H, Yang HC, You L, Wang YY, He WJ and Hao CM: The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int. 83:404–413. 2013.PubMed/NCBI View Article : Google Scholar | |
Xu S, Gao Y, Zhang Q, Wei S, Chen Z, Dai X, Zeng Z and Zhao KS: SIRT1/3 activation by resveratrol attenuates acute kidney injury in a septic rat model. Oxid Med Cell Longev. 2016(7296092)2016.PubMed/NCBI View Article : Google Scholar | |
Ozkok A, Ravichandran K, Wang Q, Ljubanovic D and Edelstein CL: NF-κB transcriptional inhibition ameliorates cisplatin-induced acute kidney injury (AKI). Toxicol Lett. 240:105–113. 2016.PubMed/NCBI View Article : Google Scholar | |
Morigi M, Perico L, Rota C, Longaretti L, Conti S, Rottoli D, Novelli R, Remuzzi G and Benigni A: Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J Clin Invest. 125:715–726. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhang Q, Liu X, Li N, Zhang J, Yang J and Bu P: Sirtuin 3 deficiency aggravates contrast-induced acute kidney injury. J Transl Med. 16(313)2018.PubMed/NCBI View Article : Google Scholar | |
Ning YC, Cai GY, Zhuo L, Gao JJ, Dong D, Cui SY, Shi SZ, Feng Z, Zhang L, Sun XF and Chen XM: Beneficial effects of short-term calorie restriction against cisplatin-induced acute renal injury in aged rats. Nephron Exp Nephrol. 124:19–27. 2013.PubMed/NCBI View Article : Google Scholar | |
Scharman EJ and Troutman WG: Prevention of kidney injury following rhabdomyolysis: A systematic review. Ann Pharmacother. 47:90–105. 2013.PubMed/NCBI View Article : Google Scholar | |
Jian B, Yang S, Chaudry IH and Raju R: Resveratrol restores sirtuin 1 (SIRT1) activity and pyruvate dehydrogenase kinase 1 (PDK1) expression after hemorrhagic injury in a rat model. Mol Med. 20:10–16. 2014.PubMed/NCBI View Article : Google Scholar | |
Si Y, Bao H, Han L, Chen L, Zeng L, Jing L, Xing Y and Geng Y: Dexmedetomidine attenuation of renal ischaemia-reperfusion injury requires sirtuin 3 activation. Br J Anaesth. 121:1260–1271. 2018.PubMed/NCBI View Article : Google Scholar | |
Chaix MA, Andelfinger G and Khairy P: Genetic testing in congenital heart disease: A clinical approach. World J Cardiol. 8:180–191. 2016.PubMed/NCBI View Article : Google Scholar | |
Yuan S, Zaidi S and Brueckner M: Congenital heart disease: Emerging themes linking genetics and development. Curr Opin Genet Dev. 23:352–359. 2013.PubMed/NCBI View Article : Google Scholar | |
Wu G, Nan C, Rollo JC, Huang X and Tian J: Sodium valproate-induced congenital cardiac abnormalities in mice are associated with the inhibition of histone deacetylase. J Biomed Sci. 17(16)2010.PubMed/NCBI View Article : Google Scholar | |
Zhong L, Zhu J, Lv T, Chen G, Sun H, Yang X, Huang X and Tian J: Ethanol and its metabolites induce histone lysine 9 acetylation and an alteration of the expression of heart development-related genes in cardiac progenitor cells. Cardiovasc Toxicol. 10:268–274. 2010.PubMed/NCBI View Article : Google Scholar | |
Li L, Zhu J, Tian J, Liu X and Feng C: A role for Gcn5 in cardiomyocyte differentiation of rat mesenchymal stem cells. Mol Cell Biochem. 345:309–316. 2010.PubMed/NCBI View Article : Google Scholar | |
Pillai VB, Sundaresan NR, Jeevanandam V and Gupta MP: Mitochondrial SIRT3 and heart disease. Cardiovasc Res. 88:250–256. 2010.PubMed/NCBI View Article : Google Scholar | |
Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB and Gupta MP: SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol. 28:6384–6401. 2008.PubMed/NCBI View Article : Google Scholar | |
Zhang L, Wang H, Zhao Y, Wang J, Dubielecka PM, Zhuang S, Qin G, Chin YE, Kao RL and Zhao TC: Myocyte-specific overexpressing HDAC4 promotes myocardial ischemia/reperfusion injury. Mol Med. 24(37)2018.PubMed/NCBI View Article : Google Scholar | |
Möller T and de Lange C: Myocardial fibrosis in congenital heart disease. Tidsskr Nor Laegeforen: 138: 2018 (In Norwegian) doi: 10.4045/tidsskr.18.0864. | |
Pang M and Zhuang S: Histone deacetylase: A potential therapeutic target for fibrotic disorders. J Pharmacol Exp Ther. 335:266–272. 2010.PubMed/NCBI View Article : Google Scholar | |
Morimoto T, Sunagawa Y, Fujita M and Hasegawa K: Novel heart failure therapy targeting transcriptional pathway in cardiomyocytes by a natural compound, curcumin. Circ J. 74:1059–1066. 2010.PubMed/NCBI View Article : Google Scholar | |
Hu M, Zhang Q, Tian XH, Wang JL, Niu YX and Li G: lncRNA CCAT1 is a biomarker for the proliferation and drug resistance of esophageal cancer via the miR-143/PLK1/BUBR1 axis. Mol Carcinog. 58:2207–2217. 2019.PubMed/NCBI View Article : Google Scholar | |
Li J and Qi Y: Ginsenoside Rg3 inhibits cell growth, migration and invasion in Caco-2 cells by downregulation of lncRNA CCAT1. Exp Mol Pathol. 106:131–138. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang E, Han L, Yin D, He X, Hong L, Si X, Qiu M, Xu T, De W, Xu L, et al: H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma. Nucleic Acids Res. 45:3086–3101. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Xie C, Yue J, Jiang Z, Zhou R, Xie R, Wang Y and Wu S: Cancer-associated fibroblasts mediated chemoresistance by a FOXO1/TGFβ1 signaling loop in esophageal squamous cell carcinoma. Mol Carcinog. 56:1150–1163. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L and Zhu WG: Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol. 12:665–675. 2010.PubMed/NCBI View Article : Google Scholar | |
Yu H, Ye W, Wu J, Meng X, Liu RY, Ying X, Zhou Y, Wang H, Pan C and Huang W: Overexpression of sirt7 exhibits oncogenic property and serves as a prognostic factor in colorectal cancer. Clin Cancer Res. 20:3434–3445. 2014.PubMed/NCBI View Article : Google Scholar | |
Li D, Sun X, Zhang L, Yan B, Xie S, Liu R, Liu M and Zhou J: Histone deacetylase 6 and cytoplasmic linker protein 170 function together to regulate the motility of pancreatic cancer cells. Protein Cell. 5:214–223. 2014.PubMed/NCBI View Article : Google Scholar | |
Sharma S and Taliyan R: Histone deacetylase inhibitors: Future therapeutics for insulin resistance and type 2 diabetes. Pharmacol Res. 113:320–326. 2016.PubMed/NCBI View Article : Google Scholar | |
Berry JM, Cao DJ, Rothermel BA and Hill JA: Histone deacetylase inhibition in the treatment of heart disease. Expert Opin Drug Saf. 7:53–67. 2008.PubMed/NCBI View Article : Google Scholar | |
Yoon S, Kang G and Eom GH: HDAC Inhibitors: Therapeutic potential in fibrosis-associated human diseases. Int J Mol Sci. 20(1329)2019.PubMed/NCBI View Article : Google Scholar | |
Clawson GA: Histone deacetylase inhibitors as cancer therapeutics. Ann Transl Med. 4(287)2016.PubMed/NCBI View Article : Google Scholar | |
Peserico A and Simone C: Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol. 2011(371832)2011.PubMed/NCBI View Article : Google Scholar | |
Qiu X, Xiao X, Li N and Li Y: Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuropsychopharmacol Biol Psychiatry. 72:60–72. 2017.PubMed/NCBI View Article : Google Scholar | |
Xu W, Ngo L, Perez G, Dokmanovic M and Marks PA: Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. Proc Natl Acad Sci USA. 103:15540–15545. 2006.PubMed/NCBI View Article : Google Scholar | |
Rosato RR and Grant S: Histone deacetylase inhibitors: Insights into mechanisms of lethality. Expert Opin Ther Targets. 9:809–824. 2005.PubMed/NCBI View Article : Google Scholar | |
Minucci S and Pelicci PG: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 6:38–51. 2006.PubMed/NCBI View Article : Google Scholar | |
Lane AA and Chabner BA: Histone deacetylase inhibitors in cancer therapy. J Clin Oncol. 27:5459–5468. 2009.PubMed/NCBI View Article : Google Scholar | |
Eckschlager T, Plch J, Stiborova M and Hrabeta J: Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 18(1414)2017.PubMed/NCBI View Article : Google Scholar | |
Di Pompo G, Salerno M, Rotili D, Valente S, Zwergel C, Avnet S, Lattanzi G, Baldini N and Mai A: Novel histone deacetylase inhibitors induce growth arrest, apoptosis, and differentiation in sarcoma cancer stem cells. J Med Chem. 58:4073–4079. 2015.PubMed/NCBI View Article : Google Scholar | |
Debeb BG, Lacerda L, Larson R, Wolfe AR, Krishnamurthy S, Reuben JM, Ueno NT, Gilcrease M and Woodward WA: Histone deacetylase inhibitor-induced cancer stem cells exhibit high pentose phosphate pathway metabolism. Oncotarget. 7:28329–28339. 2016.PubMed/NCBI View Article : Google Scholar | |
Cao D, Wang M, Qiu X, Liu D, Jiang H, Yang N and Xu RM: Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev. 29:1316–1325. 2015.PubMed/NCBI View Article : Google Scholar | |
Li J, Chong T, Wang Z, Chen H and Li H, Cao J, Zhang P and Li H: A novel anticancer effect of resveratrol: Reversal of epithelial-mesenchymal transition in prostate cancer cells. Mol Med Rep. 10:1717–1724. 2014.PubMed/NCBI View Article : Google Scholar | |
Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M, et al: Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 21:392–402. 2015.PubMed/NCBI View Article : Google Scholar | |
Hezroni H, Tzchori I, Davidi A, Mattout A, Biran A, Nissim-Rafinia M, Westphal H and Meshorer E: H3K9 histone acetylation predicts pluripotency and reprogramming capacity of ES cells. Nucleus. 2:300–309. 2011.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Cui P, Li Y, Feng G, Tong M, Guo L, Li T, Liu L, Li W and Zhou Q: Mitochondrially produced ATP affects stem cell pluripotency via Actl6a-mediated histone acetylation. FASEB J. 32:1891–1902. 2018.PubMed/NCBI View Article : Google Scholar | |
Qiao Y, Wang R, Yang X, Tang K and Jing N: Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J Biol Chem. 290:2508–2520. 2015.PubMed/NCBI View Article : Google Scholar | |
Jacobs KM, Misri S, Meyer B, Raj S, Zobel CL, Sleckman BP, Hallahan DE and Sharma GG: Unique epigenetic influence of H2AX phosphorylation and H3K56 acetylation on normal stem cell radioresponses. Mol Biol Cell. 27:1332–1345. 2016.PubMed/NCBI View Article : Google Scholar | |
Wen Y, Yang H, Wu J, Wang A, Chen X, Hu S, Zhang Y, Bai D and Jin Z: COL4A2 in the tissue-specific extracellular matrix plays important role on osteogenic differentiation of periodontal ligament stem cells. Theranostics. 9:4265–4286. 2019.PubMed/NCBI View Article : Google Scholar | |
Li B, Sun J, Dong Z, Xue P, He X, Liao L, Yuan L and Jin Y: GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment. Sci Rep. 6(26542)2016.PubMed/NCBI View Article : Google Scholar | |
Liu N, Shi S, Deng M, Tang L, Zhang G, Liu N, Ding B, Liu W, Liu Y, Shi H, et al: High levels of β-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway. J Bone Miner Res. 26:2082–2095. 2011.PubMed/NCBI View Article : Google Scholar | |
Ishitani T, Kishida S, Hyodo-Miura J, Ueno N, Yasuda J, Waterman M, Shibuya H, Moon RT, Ninomiya-Tsuji J and Matsumoto K: The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol. 23:131–139. 2003.PubMed/NCBI View Article : Google Scholar | |
Wang H, Diao D, Shi Z, Zhu X, Gao Y, Gao S, Liu X, Wu Y, Rudolph KL, Liu G, et al: SIRT6 controls hematopoietic stem cell homeostasis through epigenetic regulation of Wnt signaling. Cell Stem Cell. 18:495–507. 2016.PubMed/NCBI View Article : Google Scholar | |
Wagner VP, Martins MD and Castilho RM: Histones acetylation and cancer stem cells (CSCs). Methods Mol Biol. 1692:179–193. 2018.PubMed/NCBI View Article : Google Scholar | |
Liu C, Liu L, Shan J, Shen J, Xu Y, Zhang Q, Yang Z, Wu L, Xia F, Bie P, et al: Histone deacetylase 3 participates in self-renewal of liver cancer stem cells through histone modification. Cancer Lett. 339:60–69. 2013.PubMed/NCBI View Article : Google Scholar | |
Liu D, Zhou P, Zhang L, Gong W, Huang G, Zheng Y and He F: HDAC1/DNMT3A-containing complex is associated with suppression of Oct4 in cervical cancer cells. Biochemistry (Mosc). 77:934–940. 2012.PubMed/NCBI View Article : Google Scholar | |
Choi HJ, Park JH, Park M, Won HY, Joo HS, Lee CH, Lee JY and Kong G: UTX inhibits EMT-induced breast CSC properties by epigenetic repression of EMT genes in cooperation with LSD1 and HDAC1. EMBO Rep. 16:1288–1298. 2015.PubMed/NCBI View Article : Google Scholar | |
Salvador MA, Wicinski J, Cabaud O, Toiron Y, Finetti P, Josselin E, Lelièvre H, Kraus-Berthier L, Depil S, Bertucci F, et al: The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low Xist expression. Clin Cancer Res. 19:6520–6531. 2013.PubMed/NCBI View Article : Google Scholar | |
Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW and Druker BJ: Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 121:396–409. 2011.PubMed/NCBI View Article : Google Scholar | |
Li L, Wang L, Li L, Wang Z, Ho Y, McDonald T, Holyoake TL, Chen W and Bhatia R: Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell. 21:266–281. 2012.PubMed/NCBI View Article : Google Scholar | |
Hsu YC, Wu YT, Tsai CL and Wei YH: Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells. Exp Biol Med (Maywood). 243:563–575. 2018.PubMed/NCBI View Article : Google Scholar | |
Sun J, Wei HM, Xu J, Chang JF, Yang Z, Ren X, Lv WW, Liu LP, Pan LX, Wang X, et al: Histone H1-mediated epigenetic regulation controls germline stem cell self-renewal by modulating H4K16 acetylation. Nat Commun. 6(8856)2015.PubMed/NCBI View Article : Google Scholar | |
Hou T, Zheng G, Zhang P, Jia J, Li J, Xie L, Wei C and Li Y: LAceP: Lysine acetylation site prediction using logistic regression classifiers. PLoS One. 9(e89575)2014.PubMed/NCBI View Article : Google Scholar | |
Chen C, Huang H and Wu CH: Protein bioinformatics databases and resources. Methods Mol Biol. 1558:3–39. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang L, Du Y, Lu M and Li T: ASEB: A web server for KAT-specific acetylation site prediction. Nucleic Acids Res. 40:W376–379. 2012.PubMed/NCBI View Article : Google Scholar | |
Deng W, Wang C, Zhang Y, Xu Y, Zhang S, Liu Z and Xue Y: GPS-PAIL: Prediction of lysine acetyltransferase-specific modification sites from protein sequences. Sci Rep. 6(39787)2016.PubMed/NCBI View Article : Google Scholar | |
Shi SP, Qiu JD, Sun XY, Suo SB, Huang SY and Liang RP: PLMLA: Prediction of lysine methylation and lysine acetylation by combining multiple features. Mol Biosyst. 8:1520–1527. 2012.PubMed/NCBI View Article : Google Scholar |