1
|
Fan Y, Piao CH, Hyeon E, Jung SY, Eom JE,
Shin HS, Song CH and Chai OH: Gallic acid alleviates nasal
inflammation via activation of Th1 and inhibition of Th2 and Th17
in a mouse model of allergic rhinitis. Int Immunopharmacol.
70:512–519. 2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Skoner DP: Allergic rhinitis: Definition,
epidemiology, pathophysiology, detection, and diagnosis. J Allergy
Clin Immunol. 108 (Suppl):S2–S8. 2001.PubMed/NCBI View Article : Google Scholar
|
3
|
Meltzer EO, Blaiss MS, Derebery MJ, Mahr
TA, Gordon BR, Sheth KK, Simmons AL, Wingertzahn MA and Boyle JM:
Burden of allergic rhinitis: Results from the Pediatric Allergies
in America survey. J Allergy Clin Immunol. 124 (Suppl):S43–S70.
2009.PubMed/NCBI View Article : Google Scholar
|
4
|
Sritipsukho P, Satdhabudha A and
Nanthapisal S: Effect of allergic rhinitis and asthma on the
quality of life in young Thai adolescents. Asian Pac J Allergy
Immunol. 33:222–226. 2015.PubMed/NCBI View Article : Google Scholar
|
5
|
Pilette C, Jacobson MR, Ratajczak C, Detry
B, Banfield G, VanSnick J, Durham SR and Nouri-Aria KT: Aberrant
dendritic cell function conditions Th2-cell polarization in
allergic rhinitis. Allergy. 68:312–321. 2013.PubMed/NCBI View Article : Google Scholar
|
6
|
Ciprandi G, Marseglia GL, Castagnoli R,
Valsecchi C, Tagliacarne C, Caimmi S and Licari A: From IgE to
clinical trials of allergic rhinitis. Expert Rev Clin Immunol.
11:1321–1333. 2015.PubMed/NCBI View Article : Google Scholar
|
7
|
Akdis M and Akdis CA: Mechanisms of
allergen-specific immunotherapy: Multiple suppressor factors at
work in immune tolerance to allergens. J Allergy Clin Immunol.
133:621–631. 2014.PubMed/NCBI View Article : Google Scholar
|
8
|
Wang M, Zhang W, Shang J, Yang J, Zhang L
and Bachert C: Immunomodulatory effects of IL-23 and IL-17 in a
mouse model of allergic rhinitis. Clin Exp Allergy. 43:956–966.
2013.PubMed/NCBI View Article : Google Scholar
|
9
|
Moon IJ, Hong SL, Kim DY, Lee CH, Rhee CS
and Min YG: Blocking interleukin-17 attenuates enhanced
inflammation by staphylococcal enterotoxin B in murine allergic
rhinitis model. Acta Otolaryngol. 132 (Suppl 1):S6–S12.
2012.PubMed/NCBI View Article : Google Scholar
|
10
|
Shirasaki H, Kanaizumi E, Seki N and Himi
T: Correlation of Local FOXP3-Expressing T Cells and Th1-Th2
Balance in Perennial Allergic Nasal Mucosa. Int J Otolaryngol.
2011(259867)2011.PubMed/NCBI View Article : Google Scholar
|
11
|
Boraschi D, Lucchesi D, Hainzl S, Leitner
M, Maier E, Mangelberger D, Oostingh GJ, Pfaller T, Pixner C,
Posselt G, et al: IL-37: A new anti-inflammatory cytokine of the
IL-1 family. Eur Cytokine Netw. 22:127–147. 2011.PubMed/NCBI View Article : Google Scholar
|
12
|
Ye L, Ji L, Wen Z, Zhou Y, Hu D, Li Y, Yu
T, Chen B, Zhang J, Ding L, et al: IL-37 inhibits the production of
inflammatory cytokines in peripheral blood mononuclear cells of
patients with systemic lupus erythematosus: Its correlation with
disease activity. J Transl Med. 12(69)2014.PubMed/NCBI View Article : Google Scholar
|
13
|
Teng X, Hu Z, Wei X, Wang Z, Guan T, Liu
N, Liu X, Ye N, Deng G, Luo C, et al: IL-37 ameliorates the
inflammatory process in psoriasis by suppressing proinflammatory
cytokine production. J Immunol. 192:1815–1823. 2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Wang J, Shen Y, Li C, Liu C, Wang ZH, Li
YS, Ke X and Hu GH: IL-37 attenuates allergic process via
STAT6/STAT3 pathways in murine allergic rhinitis. Int
Immunopharmacol. 69:27–33. 2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Kim DH, Kim SW, Kim SW and Kang JM:
Interleukin-37 relieves allergic inflammation in a house dust mite
allergic rhinitis murine model. Iran J Allergy Asthma Immunol.
16:404–417. 2017.PubMed/NCBI
|
16
|
Li C, Shen Y, Wang J, Ma ZX, Ke X, Wang
ZH, Hong SL and Hu GH: Increased expression of IL-1R8 and a
possible immunomodulatory role of its ligand IL-37 in allergic
rhinitis patients. Int Immunopharmacol. 60:152–159. 2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Nold MF, Nold-Petry CA, Zepp JA, Palmer
BE, Bufler P and Dinarello CA: IL-37 is a fundamental inhibitor of
innate immunity. Nat Immunol. 11:1014–1022. 2010.PubMed/NCBI View
Article : Google Scholar
|
18
|
Nold-Petry CA, Lo CY, Rudloff I, Elgass
KD, Li S, Gantier MP, Lotz-Havla AS, Gersting SW, Cho SX, Lao JC,
et al: IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to
carry out its multifaceted anti-inflammatory program upon innate
signal transduction. Nat Immunol. 16:354–365. 2015.PubMed/NCBI View
Article : Google Scholar
|
19
|
Kim J, Merry AC, Nemzek JA, Bolgos GL,
Siddiqui J and Remick DG: Eotaxin represents the principal
eosinophil chemoattractant in a novel murine asthma model induced
by house dust containing cockroach allergens. J Immunol.
167:2808–2815. 2001.PubMed/NCBI View Article : Google Scholar
|
20
|
Pope SM, Zimmermann N, Stringer KF, Karow
ML and Rothenberg ME: The eotaxin chemokines and CCR3 are
fundamental regulators of allergen-induced pulmonary eosinophilia.
J Immunol. 175:5341–5350. 2005.PubMed/NCBI View Article : Google Scholar
|
21
|
Kuperman DA and Schleimer RP:
Interleukin-4, interleukin-13, signal transducer and activator of
transcription factor 6, and allergic asthma. Curr Mol Med.
8:384–392. 2008.PubMed/NCBI View Article : Google Scholar
|
22
|
Hosokawa Y, Hosokawa I, Shindo S, Ozaki K
and Matsuo T: IL-4 Modulates CCL11 and CCL20 Productions from
IL-1β-Stimulated Human Periodontal Ligament Cells. Cell Physiol
Biochem. 38:153–159. 2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Miyagawa Y, Murakami A and Ebihara N: The
proteolytic effect of mast cell tryptase to
eotaxin-1/CCL11·eotaxin-2/CCL24 and eotaxin-3/CCL26 produced by
conjunctival fibroblasts. Jpn J Ophthalmol. 63:215–220.
2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Lv J, Xiong Y, Li W, Cui X, Cheng X, Leng
Q and He R: IL-37 inhibits IL-4/IL-13-induced CCL11 production and
lung eosinophilia in murine allergic asthma. Allergy. 73:1642–1652.
2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Bui TT, Piao CH, Song CH and Chai OH:
Skullcapflavone II attenuates ovalbumin-induced allergic rhinitis
through the blocking of Th2 cytokine production and mast cell
histamine release. Int Immunopharmacol. 52:77–84. 2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Zhao N, Liu Y, Liang H and Jiang X: Bone
marrow-derived mesenchymal stem cells reduce immune reaction in a
mouse model of allergic rhinitis. Am J Transl Res. 8:5628–5636.
2016.PubMed/NCBI
|
27
|
Humbles AA, Lloyd CM, McMillan SJ, Friend
DS, Xanthou G, McKenna EE, Ghiran S, Gerard NP, Yu C, Orkin SH, et
al: A critical role for eosinophils in allergic airways remodeling.
Science. 305:1776–1779. 2004.PubMed/NCBI View Article : Google Scholar
|
28
|
Canonica GW and Compalati E: Minimal
persistent inflammation in allergic rhinitis: Implications for
current treatment strategies. Clin Exp Immunol. 158:260–271.
2009.PubMed/NCBI View Article : Google Scholar
|
29
|
Shahsavan S, Pirayesh A, Samani OZ,
Shirzad H, Zamani MA, Amani S, Kazemi SM, Moghni M, Deris F, Bageri
N, et al: The relationship between IL-17A and IL-22 expression and
clinical severity in patients with moderate/severe persistent
allergic rhinitis. Am J Otolaryngol. 40:173–178. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Rosenberg HF, Phipps S and Foster PS:
Eosinophil trafficking in allergy and asthma. J Allergy Clin
Immunol. 119:1303–1310; quiz 1311-1312. 2007.PubMed/NCBI View Article : Google Scholar
|
31
|
Wills-Karp M, Luyimbazi J, Xu X, Schofield
B, Neben TY, Karp CL and Donaldson DD: Interleukin-13: Central
mediator of allergic asthma. Science. 282:2258–2261.
1998.PubMed/NCBI View Article : Google Scholar
|
32
|
Zhong H, Fan XL, Fang SB, Lin YD, Wen W
and Fu QL: Human pluripotent stem cell-derived mesenchymal stem
cells prevent chronic allergic airway inflammation via
TGF-β1-Smad2/Smad3 signaling pathway in mice. Mol Immunol.
109:51–57. 2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Norris GT and Kipnis J: Immune cells and
CNS physiology: Microglia and beyond. J Exp Med. 216:60–70.
2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Rubtsov YP, Rasmussen JP, Chi EY, Fontenot
J, Castelli L, Ye X, Treuting P, Siewe L, Roers A, Henderson WR Jr,
et al: Regulatory T cell-derived interleukin-10 limits inflammation
at environmental interfaces. Immunity. 28:546–558. 2008.PubMed/NCBI View Article : Google Scholar
|
35
|
Stockwell BR and Jiang X: A Physiological
Function for Ferroptosis in Tumor Suppression by the Immune System.
Cell Metab. 30:14–15. 2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Huang N, Liu K, Liu J, Gao X, Zeng Z,
Zhang Y and Chen J: Interleukin-37 alleviates airway inflammation
and remodeling in asthma via inhibiting the activation of NF-κB and
STAT3 signalings. Int Immunopharmacol. 55:198–204. 2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Xuekun H, Qintai Y, Yulian C and Gehua Z:
Correlation of gammadelta-T-cells, Th17 cells and IL-17 in
peripheral blood of patients with allergic rhinitis. Asian Pac J
Allergy Immunol. 32:235–239. 2014.PubMed/NCBI View Article : Google Scholar
|
38
|
Kidd P: Th1/Th2 balance: The hypothesis,
its limitations, and implications for health and disease. Altern
Med Rev. 8:223–246. 2003.PubMed/NCBI
|
39
|
Zhu J, Dong J, Ji L, Jiang P, Leung TF,
Liu D, Ng LG, Tsang MS, Jiao D, Lam CW, et al: Anti-allergic
inflammatory activity of interleukin-37 is mediated by novel
signaling cascades in human eosinophils. Front Immunol.
9(1445)2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Campbell TM and Bryceson YT: IL2RB
maintains immune harmony. J Exp Med. 216:1231–1233. 2019.PubMed/NCBI View Article : Google Scholar
|