1
|
McCarthy J, Minsky ML, Rochester N and
Shannon CE: A proposal for the Dartmouth Summer Research Project on
Artificial Intelligence. AI Mag. 27:12. 2006.
|
2
|
Samuel AL: Some studies in machine
learning using the game of checkers. IBM J Res Develop. 3:210–229.
1959.
|
3
|
Lee A, Taylor P, Kalpathy-Cramer J and
Tufail A: Machine learning has arrived! Ophthalmology.
124:1726–1728. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
LeCun Y, Bengio Y and Hinton G: Deep
learning. Nature. 521:436–444. 2015.PubMed/NCBI View Article : Google Scholar
|
5
|
Schmidt-Erfurth U, Sadeghipour A, Gerendas
BS, Waldstein SM and Bogunović H: Artificial intelligence in
retina. Prog Retin Eye Res. 67:1–29. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
De Fauw J, Ledsam JR, Romera-Paredes B,
Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot X, O'Donoghue
B, Visentin D, et al: Clinically applicable deep learning for
diagnosis and referral in retinal disease. Nat Med. 24:1342–1350.
2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Lee CS, Tyring AJ, Deruyter NP, Wu Y,
Rokem A and Lee AY: Deep-learning based, automated segmentation of
macular edema in optical coherence tomography. Biomed Opt Express.
8:3440–3448. 2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Kermany DS, Goldbaum M, Cai W, Valentim
CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, et al:
Identifying medical diagnoses and treatable diseases by image-based
deep learning. Cell. 172:1122–1131.e9. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Sayres R, Taly A, Rahimy E, Blumer K, Coz
D, Hammel N, Krause J, Narayanaswamy A, Rastegar Z, Wu D, et al:
Using a deep learning algorithm and integrated gradients
explanation to assist grading for diabetic retinopathy.
Ophthalmology. 126:552–564. 2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Hussain MA, Bhuiyan A, Turpin A, Luu CD,
Smith RT, Guymer RH and Kotagiri R: Automatic identification of
pathology distorted retinal layer boundaries using SD-OCT imaging.
IEEE Trans Biomed Eng. 64:1638–1649. 2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Fabritius T, Makita S, Miura M, Myllylä R
and Yasuno Y: Automated segmentation of the macula by optical
coherence tomography. Opt Express. 17:15659–15669. 2009.PubMed/NCBI View Article : Google Scholar
|
12
|
Yazdanpanah A, Hamarneh G, Smith B and
Sarunic M: Intra-retinal layer segmentation in optical coherence
tomography using an active contour approach. Med Image Comput
Comput Assist Interv. 12:649–656. 2009.PubMed/NCBI View Article : Google Scholar
|
13
|
Liu YY, Ishikawa H, Chen M, Wollstein G,
Duker JS, Fujimoto JG, Schuman JS and Rehg JM: Computerized macular
pathology diagnosis in spectral domain optical coherence tomography
scans based on multiscale texture and shape features. Invest
Ophthalmol Vis Sci. 52:8316–8322. 2011.PubMed/NCBI View Article : Google Scholar
|
14
|
Fang L, Cunefare D, Wang C, Guymer RH, Li
S and Farsiu S: Automatic segmentation of nine retinal layer
boundaries in OCT images of non-exudative AMD patients using deep
learning and graph search. Biomed Opt Express. 8:2732–2744.
2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Prahs P, Radeck V, Mayer C, Cvetkov Y,
Cvetkova N, Helbig H and Märker D: OCT-based deep learning
algorithm for the evaluation of treatment indication with
anti-vascular endothelial growth factor medications. Graefes Arch
Clin Exp Ophthalmol. 256:91–98. 2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Chakravarthy U, Goldenberg D, Young G,
Havilio M, Rafaeli O, Benyamini G and Loewenstein A: Automated
identification of lesion activity in neovascular age-related macular
degeneration. Ophthalmology. 123:1731–1736. 2016.PubMed/NCBI View Article : Google Scholar
|
17
|
Treder M, Lauermann JL and Eter N:
Automated detection of exudative age-related macular degeneration
in spectral domain optical coherence tomography using deep
learning. Graefes Arch Clin Exp Ophthalmol. 256:259–265.
2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Syed AM, Hassan T, Akram MU, Naz S and
Khalid S: Automated diagnosis of macular edema and central serous
retinopathy through robust reconstruction of 3D retinal surfaces.
Comput Methods Programs Biomed. 137:1–10. 2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Xu Y, Yan K, Kim J, Wang X, Li C, Su L, Yu
S, Xu X and Feng DD: Dual-stage deep learning framework for pigment
epithelium detachment segmentation in polypoidal choroidal
vasculopathy. Biomed Opt Express. 8:4061–4076. 2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Gilbert C and Foster A: Childhood
blindness in the context of VISION 2020 - the right to sight. Bull
World Health Organ. 79:227–232. 2001.PubMed/NCBI
|
21
|
No authors listed. Cryotherapy for
retinopathy of prematurity cooperative group: Multicenter trial of
cryotherapy for retinopathy of prematurity. Preliminary results.
Arch Ophthalmol. 106:471–479. 1988.PubMed/NCBI View Article : Google Scholar
|
22
|
International Committee for the
Classification of Retinopathy of Prematurity. The International
Classification of Retinopathy of Prematurity Revisited. Arch
Ophthalmol. 123:991–999. 2005.PubMed/NCBI View Article : Google Scholar
|
23
|
Reynolds JD, Dobson V, Quinn GE, Fielder
AR, Palmer EA, Saunders RA, Hardy RJ, Phelps DL, Baker JD, Trese
MT, et al: CRYO-ROP and LIGHT-ROP Cooperative Study Groups:
Evidence-based screening criteria for retinopathy of prematurity:
Natural history data from the CRYO-ROP and LIGHT-ROP studies. Arch
Ophthalmol. 120:1470–1476. 2002.PubMed/NCBI View Article : Google Scholar
|
24
|
Chiang MF, Jiang L, Gelman R, Du YE and
Flynn JT: Interexpert agreement of plus disease diagnosis in
retinopathy of prematurity. Arch Ophthalmol. 125:875–880.
2007.PubMed/NCBI View Article : Google Scholar
|
25
|
Chernyshov PV, Sampogna F, Pustišek N,
Marinovic B, Manolache L, Suru A, Salavastru CM, Tiplica GS,
Stoleriu G, Kakourou T, et al: Validation of the
dermatology-specific proxy instrument the infants and toddlers
dermatology quality of life. J Eur Acad Dermatol Venereol.
33:1405–1411. 2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Bajwa A, Aman R and Reddy AK: A
comprehensive review of diagnostic imaging technologies to evaluate
the retina and the optic disk. Int Ophthalmol. 35:733–755.
2015.PubMed/NCBI View Article : Google Scholar
|
27
|
Gelman R, Jiang L, Du YE, Martinez-Perez
ME, Flynn JT and Chiang MF: Plus disease in retinopathy of
prematurity: Pilot study of computer-based and expert diagnosis. J
AAPOS. 11:532–540. 2007.PubMed/NCBI View Article : Google Scholar
|
28
|
Ataer-Cansizoglu E, Bolon-Canedo V,
Campbell JP, Bozkurt A, Erdogmus D, Kalpathy-Cramer J, Patel S,
Jonas K, Chan RV, Ostmo S, et al: i-ROP Research Consortium: i-ROP
Research Consortium. Computer-based image analysis for plus disease
diagnosis in retinopathy of prematurity: Performance of the ‘i-ROP’
system and image features associated with expert diagnosis. Transl
Vis Sci Technol. 4(5)2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Brown JM, Campbell JP, Beers A, Chang K,
Ostmo S, Chan RV, Dy J, Erdogmus D, Ioannidis S, Kalpathy-Cramer J,
et al: Imaging and Informatics in Retinopathy of Prematurity
(i-ROP) Research Consortium: Imaging and Informatics in Retinopathy
of Prematurity (i-ROP) Research Consortium. Automated diagnosis of
plus disease in retinopathy of prematurity using deep convolutional
neural networks. JAMA Ophthalmol. 136:803–810. 2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Safi H, Safi S, Hafezi-Moghadam A and
Ahmadieh H: Early detection of diabetic retinopathy. Surv
Ophthalmol. 63:601–608. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Schaas BA, Ivan S, Titianu M, Condratovici
CP, Maier A and Schaas CM: Biochemical markers predicting the risk
of gestational diabetes mellitus. Mater Plast. 54:133–136.
2017.
|
32
|
Alexe O, Gainaru C, Serafinceanu C,
Pleseacondratovici A, Danciulescu-Miulescu R and Pleseacondratovici
C: Patient- Reported Outcomes (PROs) in Romanian type 2 diabetic
patients - Results from a Multicentre National Registry. In:
Interdisciplinary Approaches In Diabetic Chronic Kidney Disease.
Bucuresti, pp76-88, 2015.
|
33
|
Abbas Q, Fondon I, Sarmiento A, Jiménez S
and Alemany P: Automatic recognition of severity level for
diagnosis of diabetic retinopathy using deep visual features. Med
Biol Eng Comput. 55:1959–1974. 2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Raju M, Pagidimarri V, Barreto R, Kadam A,
Kasivajjala V and Aswath A: Development of a deep learning
algorithm for automatic diagnosis of diabetic retinopathy. Stud
Health Technol Inform. 245:559–563. 2017.PubMed/NCBI
|
35
|
Xu K, Feng D and Mi H: Deep convolutional
neural network-based early automated detection of diabetic
retinopathy using fundus image. Molecules. 22(2054)2017.PubMed/NCBI View Article : Google Scholar
|
36
|
Gulshan V, Peng L, Coram M, Stumpe MC, Wu
D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J,
et al: Development and validation of a deep learning algorithm for
detection of diabetic retinopathy in retinal fundus photographs.
JAMA. 316:2402–2410. 2016.PubMed/NCBI View Article : Google Scholar
|
37
|
Ting DSW, Cheung CY-L, Lim G, Tan GSW,
Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, et
al: Development and validation of a deep learning system for
diabetic retinopathy and related eye diseases using retinal images
from multiethnic populations with diabetes. JAMA. 318:2211–2223.
2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Gargeya R and Leng T: Automated
identification of diabetic retinopathy using deep learning.
Ophthalmology. 124:962–969. 2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Schmidt-Erfurth U, Bogunovic H,
Sadeghipour A, Schlegl T, Langs G, Gerendas BS, Osborne A and
Waldstein SM: Machine learning to analyze the prognostic value of
current imaging biomarkers in neovascular age-related macular
degeneration. Ophthalmol Retina. 2:24–30. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Lee CS, Baughman DM and Lee AY: Deep
learning is effective for classifying normal versus age-related
macular degeneration OCT images. Ophthalmol Retina. 1:322–327.
2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Aslam TM, Zaki HR, Mahmood S, Ali ZC,
Ahmad NA, Thorell MR and Balaskas K: Use of a neural net to model
the impact of optical coherence tomography abnormalities on vision
in age-related macular degeneration. Am J Ophthalmol. 185:94–100.
2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Burlina P, Pacheco KD, Joshi N, Freund DE
and Bressler NM: Comparing humans and deep learning performance for
grading AMD: A study in using universal deep features and transfer
learning for automated AMD analysis. Comput Biol Med. 82:80–86.
2017.PubMed/NCBI View Article : Google Scholar
|
43
|
Burlina PM, Joshi N, Pekala M, Pacheco KD,
Freund DE and Bressler NM: Automated grading of age related macular
degeneration from color fundus images using deep convolutional
neural networks. JAMA Ophthalmol. 135:1170–1176. 2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Prahs P, Märker D, Mayer C and Helbig H:
Deep learning to support therapy decisions for intravitreal
injections. Ophthalmologe. 115:722–727. 2018.PubMed/NCBI View Article : Google Scholar : (In German).
|
45
|
Schlegl T, Waldstein SM, Bogunovic H,
Endstrasser F, Sadeghipour A, Philip AM, Podkowinski D, Gerendas
BS, Langs G and Schmidt-Erfurth U: Fully automated detection and
quantification of macular fluid in OCT using deep learning.
Ophthalmology. 125:549–558. 2018.PubMed/NCBI View Article : Google Scholar
|
46
|
Bogunovic H, Waldstein SM, Schlegl T,
Langs G, Sadeghipour A, Liu X, Gerendas BS, Osborne A and
Schmidt-Erfurth U: Prediction of anti-VEGF treatment requirements
in neovascular AMD using a machine learning approach. Invest
Ophthalmol Vis Sci. 58:3240–3248. 2017.PubMed/NCBI View Article : Google Scholar
|
47
|
Schmidt-Erfurth U and Waldstein SM: A
paradigm shift in imaging biomarkers in neovascular age-related
macular degeneration. Prog Retin Eye Res. 50:1–24. 2016.PubMed/NCBI View Article : Google Scholar
|
48
|
Bogunovic H, Montuoro A, Baratsits M,
Karantonis MG, Waldstein SM, Schlanitz F and Schmidt-Erfurth U:
Machine learning of the progression of intermediate age-related
macular degeneration based on OCT imaging. Invest Ophthalmol Vis
Sci. 58:BIO141–BIO150. 2017.PubMed/NCBI View Article : Google Scholar
|
49
|
Stanca HT, Petrović Z and Munteanu M:
Transluminal Nd:YAG laser embolysis - A reasonable method to
reperfuse occluded branch retinal arteries. Vojnosanit Pregl.
71:1072–1077. 2014.PubMed/NCBI View Article : Google Scholar
|
50
|
Munteanu M, Rosca C and Stanca H:
Sub-inner limiting membrane hemorrhage in a patient with Terson
syndrome. Int Ophthalmol. 39:461–464. 2019.PubMed/NCBI View Article : Google Scholar
|
51
|
Stanca HT, Stanca S, Tabacaru B, Boruga M
and Balta F: Bevacizumab in Wet AMD treatment: A tribute to the
thirteen years of experience from the beginning of the anti-VEGF
era in Romania. Exp Ther Med. 18:4993–5000. 2019.PubMed/NCBI View Article : Google Scholar
|
52
|
Danielescu C, Stanca HT and Balta F: The
Management of lamellar macular holes: A review. J Ophthalmol.
2020(3526316)2020.PubMed/NCBI View Article : Google Scholar
|
53
|
Keel S, Lee PY, Scheetz J, Li Z, Kotowicz
MA, MacIsaac RJ and He M: Feasibility and patient acceptability of
a novel artificial intelligence-based screening model for diabetic
retinopathy at endocrinology outpatient services: A pilot study.
Sci Rep. 8(4330)2018.PubMed/NCBI View Article : Google Scholar
|
54
|
Armstrong GW and Lorch AC: A(eye): A
review of current applications of artificial intelligence and
machine learning in ophthalmology. Int Ophthalmol Clin. 60:57–71.
2020.PubMed/NCBI View Article : Google Scholar
|
55
|
Consejo A, Melcer T and Rozema JJ:
Introduction to machine learning for ophthalmologists. Semin
Ophthalmol. 34:19–41. 2019.PubMed/NCBI View Article : Google Scholar
|