1
|
Montani D, Günther S, Dorfmüller P, Perros
F, Girerd B, Garcia G, Jaïs X, Savale L, Artaud-Macari E, Price LC,
et al: Pulmonary arterial hypertension. Orphanet J Rare Dis.
8(97)2013.PubMed/NCBI View Article : Google Scholar
|
2
|
Tuder RM, Marecki JC, Richter A,
Fijalkowska I and Flores S: Pathology of pulmonary hypertension.
Clin Chest Med. 28:23–42, vii. 2007.PubMed/NCBI View Article : Google Scholar
|
3
|
Budhiraja R, Tuder RM and Hassoun PM:
Endothelial dysfunction in pulmonary hypertension. Circulation.
109:159–165. 2004.PubMed/NCBI View Article : Google Scholar
|
4
|
Upton PD, Davies RJ, Tajsic T and Morrell
NW: Transforming growth factor-β(1) represses bone morphogenetic
protein-mediated Smad signaling in pulmonary artery smooth muscle
cells via Smad3. Am J Respir Cell Mol Biol. 49:1135–1145.
2013.PubMed/NCBI View Article : Google Scholar
|
5
|
Rol N, Kurakula KB, Happé C, Bogaard HJ
and Goumans MJ: TGF-β and BMPR2 signaling in PAH: Two black sheep
in one family. Int J Mol Sci. 19(2585)2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Wong WK, Knowles JA and Morse JH: Bone
morphogenetic protein receptor type II C-terminus interacts with
c-Src: Implication for a role in pulmonary arterial hypertension.
Am J Respir Cell Mol Biol. 33:438–446. 2005.PubMed/NCBI View Article : Google Scholar
|
7
|
Liu D and Morrell NW: Genetics and the
molecular pathogenesis of pulmonary arterial hypertension. Curr
Hypertens Rep. 15:632–637. 2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Tuder RM: Pulmonary vascular remodeling in
pulmonary hypertension. Cell Tissue Res. 367:643–649.
2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Stenmark KR, Fagan KA and Frid MG:
Hypoxia-induced pulmonary vascular remodeling: Cellular and
molecular mechanisms. Circ Res. 99:675–691. 2006.PubMed/NCBI View Article : Google Scholar
|
10
|
Wong CM, Bansal G, Pavlickova L, Marcocci
L and Suzuki YJ: Reactive oxygen species and antioxidants in
pulmonary hypertension. Antioxid Redox Signal. 18:1789–1796.
2013.PubMed/NCBI View Article : Google Scholar
|
11
|
Salminen A, Kaarniranta K and Kauppinen A:
Crosstalk between oxidative stress and SIRT1: Impact on the aging
process. Int J Mol Sci. 14:3834–3859. 2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Ruan L, Wang L, Wang X, He M and Yao X:
SIRT1 contributes to neuroendocrine differentiation of prostate
cancer. Oncotarget. 9:2002–2016. 2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Martinez-Redondo P and Vaquero A: The
diversity of histone versus nonhistone sirtuin substrates. Genes
Cancer. 4:148–163. 2013.PubMed/NCBI View Article : Google Scholar
|
14
|
Chen PI, Cao A, Miyagawa K, Tojais NF,
Hennigs JK, Li CG, Sweeney NM, Inglis AS, Wang L, Li D, et al:
Amphetamines promote mitochondrial dysfunction and DNA damage in
pulmonary hypertension. JCI Insight. 2(e90427)2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Zurlo G, Piquereau J, Moulin M, Pires Da
Silva J, Gressette M, Ranchoux B, Garnier A, Ventura-Clapier R,
Fadel E, Humbert M, et al: Sirtuin 1 regulates pulmonary artery
smooth muscle cell proliferation: Role in pulmonary arterial
hypertension. J Hypertens. 36:1164–1177. 2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Peck B, Chen CY, Ho KK, Di Fruscia P,
Myatt SS, Coombes RC, Fuchter MJ, Hsiao CD and Lam EW: SIRT
inhibitors induce cell death and p53 acetylation through targeting
both SIRT1 and SIRT2. Mol Cancer Ther. 9:844–855. 2010.PubMed/NCBI View Article : Google Scholar
|
17
|
Sefton EC, Qiang W, Serna V, Kurita T, Wei
JJ, Chakravarti D and Kim JJ: MK-2206, an AKT inhibitor, promotes
caspase-independent cell death and inhibits leiomyoma growth.
Endocrinology. 154:4046–4057. 2013.PubMed/NCBI View Article : Google Scholar
|
18
|
Shiota M, Yokomizo A, Tada Y, Inokuchi J,
Kashiwagi E, Masubuchi D, Eto M, Uchiumi T and Naito S: Castration
resistance of prostate cancer cells caused by castration-induced
oxidative stress through Twist1 and androgen receptor
overexpression. Oncogene. 29:237–250. 2010.PubMed/NCBI View Article : Google Scholar
|
19
|
Kang BY, Kleinhenz JM, Murphy TC and Hart
CM: The PPARγ ligand rosiglitazone attenuates hypoxia-induced
endothelin signaling in vitro and in vivo. Am J Physiol Lung Cell
Mol Physiol. 301:L881–L891. 2011.PubMed/NCBI View Article : Google Scholar
|
20
|
Green DE, Murphy TC, Kang BY, Kleinhenz
JM, Szyndralewiez C, Page P, Sutliff RL and Hart CM: The Nox4
inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular
cell proliferation. Am J Respir Cell Mol Biol. 47:718–726.
2012.PubMed/NCBI View Article : Google Scholar
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
22
|
Bonnet S, Michelakis ED, Porter CJ,
Andrade-Navarro MA, Thébaud B, Bonnet S, Haromy A, Harry G, Moudgil
R, McMurtry MS, et al: An abnormal mitochondrial-hypoxia inducible
factor-1alpha-Kv channel pathway disrupts oxygen sensing and
triggers pulmonary arterial hypertension in fawn hooded rats:
Similarities to human pulmonary arterial hypertension. Circulation.
113:2630–2641. 2006.PubMed/NCBI View Article : Google Scholar
|
23
|
Kennedy SG, Wagner AJ, Conzen SD, Jordán
J, Bellacosa A, Tsichlis PN and Hay N: The PI 3-kinase/Akt
signaling pathway delivers an anti-apoptotic signal. Genes Dev.
11:701–713. 1997.PubMed/NCBI View Article : Google Scholar
|
24
|
Kazi AA, Molitoris KH and Koos RD:
Estrogen rapidly activates the PI3K/AKT pathway and
hypoxia-inducible factor 1 and induces vascular endothelial growth
factor A expression in luminal epithelial cells of the rat uterus.
Biol Reprod. 81:378–387. 2009.PubMed/NCBI View Article : Google Scholar
|
25
|
Phaniendra A, Jestadi DB and Periyasamy L:
Free radicals: Properties, sources, targets, and their implication
in various diseases. Indian J Clin Biochem. 30:11–26.
2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Demarco VG, Whaley-Connell AT, Sowers JR,
Habibi J and Dellsperger KC: Contribution of oxidative stress to
pulmonary arterial hypertension. World J Cardiol. 2:316–324.
2010.PubMed/NCBI View Article : Google Scholar
|
27
|
Migliaccio E, Giorgio M and Pelicci PG:
Apoptosis and aging: Role of p66Shc redox protein. Antioxid Redox
Signal. 8:600–608. 2006.PubMed/NCBI View Article : Google Scholar
|
28
|
Zangar RC, Davydov DR and Verma S:
Mechanisms that regulate production of reactive oxygen species by
cytochrome P450. Toxicol Appl Pharmacol. 199:316–331.
2004.PubMed/NCBI View Article : Google Scholar
|
29
|
Circu ML, Moyer MP, Harrison L and Aw TY:
Contribution of glutathione status to oxidant-induced mitochondrial
DNA damage in colonic epithelial cells. Free Radic Biol Med.
47:1190–1198. 2009.PubMed/NCBI View Article : Google Scholar
|
30
|
Rachek LI, Yuzefovych LV, Ledoux SP, Julie
NL and Wilson GL: Troglitazone, but not rosiglitazone, damages
mitochondrial DNA and induces mitochondrial dysfunction and cell
death in human hepatocytes. Toxicol Appl Pharmacol. 240:348–354.
2009.PubMed/NCBI View Article : Google Scholar
|
31
|
Wedgwood S and Black SM: Role of reactive
oxygen species in vascular remodeling associated with pulmonary
hypertension. Antioxid Redox Signal. 5:759–769. 2003.PubMed/NCBI View Article : Google Scholar
|
32
|
Kemp M, Go YM and Jones DP: Nonequilibrium
thermodynamics of thiol/disulfide redox systems: A perspective on
redox systems biology. Free Radic Biol Med. 44:921–937.
2008.PubMed/NCBI View Article : Google Scholar
|
33
|
Go YM and Jones DP: Redox
compartmentalization in eukaryotic cells. Biochim Biophys Acta.
1780:1273–1290. 2008.PubMed/NCBI View Article : Google Scholar
|
34
|
Ekshyyan O and Aw TY: Decreased
susceptibility of differentiated PC12 cells to oxidative challenge:
Relationship to cellular redox and expression of apoptotic protease
activator factor-1. Cell Death Differ. 12:1066–1077.
2005.PubMed/NCBI View Article : Google Scholar
|
35
|
Hasegawa K, Wakino S, Yoshioka K,
Tatematsu S, Hara Y, Minakuchi H, Washida N, Tokuyama H, Hayashi K
and Itoh H: Sirt1 protects against oxidative stress-induced renal
tubular cell apoptosis by the bidirectional regulation of catalase
expression. Biochem Biophys Res Commun. 372:51–56. 2008.PubMed/NCBI View Article : Google Scholar
|
36
|
Sancho-Martinez SM, Prieto-Garcia L,
Prieto M, Fuentes-Calvo I, López-Novoa JM, Morales AI,
Martínez-Salgado C and López-Hernández FJ: N-acetylcysteine
transforms necrosis into apoptosis and affords tailored protection
from cisplatin cytotoxicity. Toxicol Appl Pharmacol. 349:83–93.
2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Roberts RL, Aroda VR and Ank BJ:
N-acetylcysteine enhances antibody-dependent cellular cytotoxicity
in neutrophils and mononuclear cells from healthy adults and human
immunodeficiency virus-infected patients. J Infect Dis.
172:1492–1502. 1995.PubMed/NCBI View Article : Google Scholar
|
38
|
Tanno M, Sakamoto J, Miura T, Shimamoto K
and Horio Y: Nucleocytoplasmic shuttling of the NAD+-dependent
histone deacetylase SIRT1. J Biol Chem. 282:6823–6832.
2007.PubMed/NCBI View Article : Google Scholar
|
39
|
Yamamoto H, Schoonjans K and Auwerx J:
Sirtuin functions in health and disease. Mol Endocrinol.
21:1745–1755. 2007.PubMed/NCBI View Article : Google Scholar
|
40
|
Jin X, Wei Y, Xu F, Zhao M, Dai K, Shen R,
Yang S and Zhang N: SIRT1 promotes formation of breast cancer
through modulating Akt activity. J Cancer. 9:2012–2023.
2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Pillai VB, Sundaresan NR and Gupta MP:
Regulation of Akt signaling by sirtuins: Its implication in cardiac
hypertrophy and aging. Circ Res. 114:368–378. 2014.PubMed/NCBI View Article : Google Scholar
|
42
|
Sundaresan NR, Pillai VB, Wolfgeher D,
Samant S, Vasudevan P, Parekh V, Raghuraman H, Cunningham JM, Gupta
M and Gupta MP: The deacetylase SIRT1 promotes membrane
localization and activation of Akt and PDK1 during tumorigenesis
and cardiac hypertrophy. Sci Signal. 4(ra46)2011.PubMed/NCBI View Article : Google Scholar
|
43
|
Potente M, Ghaeni L, Baldessari D,
Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana
E, Alt FW, et al: SIRT1 controls endothelial angiogenic functions
during vascular growth. Genes Dev. 21:2644–2658. 2007.PubMed/NCBI View Article : Google Scholar
|
44
|
Tong C, Morrison A, Mattison S, Qian S,
Bryniarski M, Rankin B, Wang J, Thomas DP and Li J: Impaired SIRT1
nucleocytoplasmic shuttling in the senescent heart during ischemic
stress. FASEB J. 27:4332–4342. 2013.PubMed/NCBI View Article : Google Scholar
|
45
|
Shiraishi I, Melendez J, Ahn Y, Skavdahl
M, Murphy E, Welch S, Schaefer E, Walsh K, Rosenzweig A, Torella D,
et al: Nuclear targeting of Akt enhances kinase activity and
survival of cardiomyocytes. Circ Res. 94:884–891. 2004.PubMed/NCBI View Article : Google Scholar
|
46
|
Saxton RA and Sabatini DM: mTOR signaling
in growth, metabolism, and disease. Cell. 169:361–371.
2017.PubMed/NCBI View Article : Google Scholar
|
47
|
Paddenberg R, Stieger P, von Lilien AL,
Faulhammer P, Goldenberg A, Tillmanns HH, Kummer W and
Braun-Dullaeus RC: Rapamycin attenuates hypoxia-induced pulmonary
vascular remodeling and right ventricular hypertrophy in mice.
Respir Res. 8(15)2007.PubMed/NCBI View Article : Google Scholar
|
48
|
Huang S, Zhu X, Huang W, He Y, Pang L, Lan
X, Shui X, Chen Y, Chen C and Lei W: Quercetin inhibits pulmonary
arterial endothelial cell transdifferentiation possibly by Akt and
Erk1/2 pathways. Biomed Res Int. 2017(6147294)2017.PubMed/NCBI View Article : Google Scholar
|
49
|
Huang X, Wu P, Huang F, Xu M, Chen M,
Huang K, Li GP, Xu M, Yao D and Wang L: Baicalin attenuates chronic
hypoxia-induced pulmonary hypertension via adenosine A2A
receptor-induced SDF-1/CXCR4/PI3K/AKT signaling. J Biomed Sci.
24(52)2017.PubMed/NCBI View Article : Google Scholar
|
50
|
Semenza GL: Life with oxygen. Science.
318:62–64. 2007.PubMed/NCBI View Article : Google Scholar
|
51
|
Burke DL, Frid MG, Kunrath CL, Karoor V,
Anwar A, Wagner BD, Strassheim D and Stenmark KR: Sustained hypoxia
promotes the development of a pulmonary artery-specific chronic
inflammatory microenvironment. Am J Physiol Lung Cell Mol Physiol.
297:L238–L250. 2009.PubMed/NCBI View Article : Google Scholar
|
52
|
Vitali SH, Hansmann G, Rose C,
Fernandez-Gonzalez A, Scheid A, Mitsialis SA and Kourembanas S: The
Sugen 5416/hypoxia mouse model of pulmonary hypertension revisited:
Long-term follow-up. Pulm Circ. 4:619–629. 2014.PubMed/NCBI View Article : Google Scholar
|
53
|
Huang J, Tian R, Yang Y, Jiang R, Dai J,
Tang L and Zhang L: The SIRT1 inhibitor EX-527 suppresses mTOR
activation and alleviates acute lung injury in mice with
endotoxiemia. Innate Immun. 23:678–686. 2017.PubMed/NCBI View Article : Google Scholar
|
54
|
Süssmuth SD, Haider S, Landwehrmeyer GB,
Farmer R, Frost C, Tripepi G, Andersen CA, Di Bacco M, Lamanna C,
Diodato E, et al: An exploratory double-blind, randomized clinical
trial with selisistat, a SirT1 inhibitor, in patients with
Huntington's disease. Br J Clin Pharmacol. 79:465–476.
2015.PubMed/NCBI View Article : Google Scholar
|
55
|
Westerberg G, Chiesa JA, Andersen CA,
Diamanti D, Magnoni L, Pollio G, Darpo B and Zhou M: Safety,
pharmacokinetics, pharmacogenomics and QT concentration-effect
modelling of the SirT1 inhibitor selisistat in healthy volunteers.
Br J Clin Pharmacol. 79:477–491. 2015.PubMed/NCBI View Article : Google Scholar
|