1
|
Greiner AN, Hellings PW, Rotiroti G and
Scadding GK: Allergic rhinitis. Lancet. 378:2112–2122.
2011.PubMed/NCBI View Article : Google Scholar
|
2
|
Brozek JL, Bousquet J, Agache I, Agarwal
A, Bachert C, Bosnic-Anticevich S, Brignardello-Petersen R,
Canonica GW, Casale T, Chavannes NH, et al: Allergic rhinitis and
its impact on asthma (ARIA) guidelines-2016 revision. J Allergy
Clin Immunol. 140:950–958. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Pang DJ, Neves JF, Sumaria N and
Pennington DJ: Understanding the complexity of γδ T-cell subsets in
mouse and human. Immunology. 136:283–290. 2012.PubMed/NCBI View Article : Google Scholar
|
4
|
Costa MF, Bornstein VU, Candea AL,
Henriques-Pons A, Henriques MG and Penido C: CCL25 induces
α4β7 integrin-dependent migration of
IL-17+ γδ T lymphocytes during an allergic reaction. Eur
J Immunol. 42:1250–1260. 2012.PubMed/NCBI View Article : Google Scholar
|
5
|
Dyring-Andersen B, Skov L, Løvendorf MB,
Bzorek M, Søndergaard K, Lauritsen JP, Dabelsteen S, Geisler C and
Bonefeld CM: CD4+ T cells producing interleukin (IL)-17,
IL-22 and interferon-γ are major effector T cells in nickel
allergy. Contact Dermatitis. 68:339–347. 2013.PubMed/NCBI View Article : Google Scholar
|
6
|
Kohlgruber AC, Gal-Oz ST, LaMarche NM,
Shimazaki M, Duquette D, Koay HF, Nguyen HN, Mina AI, Paras T,
Tavakkoli A, et al: γδ T cells producing interleukin-17A regulate
adipose regulatory T cell homeostasis and thermogenesis. Nat
Immunol. 19:464–474. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Petermann F, Rothhammer V, Claussen MC,
Blanco LR, Heink S, Prinz I, Hemmer B, Kuchroo VK, Oukka M and Korn
T: γδ T cells enhance autoimmunity by restraining regulatory T cell
responses via an interleukin-23-dependent mechanism. Immunity.
33:351–363. 2010.PubMed/NCBI View Article : Google Scholar
|
8
|
Huang Y, Yang Z, McGowan J, Huang H,
O'Brien RL and Born WK: Regulation of IgE responses by γδ T cells.
Curr Allergy Asthma Rep. 15(13)2015.PubMed/NCBI View Article : Google Scholar
|
9
|
Ullah MA, Revez JA, Loh Z, Simpson J,
Zhang V, Bain L, Varelias A, Rose-John S, Blumenthal A, Smyth MJ,
et al: Allergen-induced IL-6 trans-signaling activates γδ T cells
to promote type 2 and type 17 airway inflammation. J Allergy Clin
Immunol. 136:1065–1073. 2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Zheng R and Yang Q: The role of the γ δ T
cell in allergic diseases. J Immunol Res.
2014(963484)2014.PubMed/NCBI View Article : Google Scholar
|
11
|
Ribeiro ST, Ribot JC and Silva-Santos B:
Five layers of receptor signaling in γδ T-cell differentiation and
activation. Front Immunol. 6(15)2015.PubMed/NCBI View Article : Google Scholar
|
12
|
Ribot JC and Silva-Santos B:
Differentiation and activation of γδ T lymphocytes: Focus on CD27
and CD28 costimulatory receptors. Adv Exp Med Biol. 785:95–105.
2013.PubMed/NCBI View Article : Google Scholar
|
13
|
Ribot JC, deBarros A, Pang DJ, Neves JF,
Peperzak V, Roberts SJ, Girardi M, Borst J, Hayday AC, Pennington
DJ and Silva-Santos B: CD27 is a thymic determinant of the balance
between interferon-gamma- and interleukin 17-producing gammadelta T
cell subsets. Nat Immunol. 10:427–436. 2009.PubMed/NCBI View Article : Google Scholar
|
14
|
Beyersdorf N, Kerkau T and Hünig T: CD28
co-stimulation in T-cell homeostasis: A recent perspective.
Immunotargets Ther. 4:111–122. 2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Ribot JC, Debarros A, Mancio-Silva L,
Pamplona A and Silva-Santos B: B7-CD28 costimulatory signals
control the survival and proliferation of murine and human γδ T
cells via IL-2 production. J Immunol. 189:1202–1208.
2012.PubMed/NCBI View Article : Google Scholar
|
16
|
Peters C, Kabelitz D and Wesch D:
Regulatory functions of γδ T cells. Cell Mol Life Sci.
75:2125–2135. 2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Akitsu A and Iwakura Y:
Interleukin-17-producing γδ T (γδ17) cells in inflammatory
diseases. Immunology. 155:418–426. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Reyes NJ, Mayhew E, Chen PW and Niederkorn
JY: γδ T cells are required for maximal expression of allergic
conjunctivitis. Invest Ophthalmol Vis Sci. 52:2211–2216.
2011.PubMed/NCBI View Article : Google Scholar
|
19
|
Takai T and Ikeda S: Barrier dysfunction
caused by environmental proteases in the pathogenesis of allergic
diseases. Allergol Int. 60:25–35. 2011.PubMed/NCBI View Article : Google Scholar
|
20
|
Wu J, Xu L, Han X, Hu H, Qi F, Bai S, Chai
R, Teng Y and Liu B: Role of γδ T cells in exacerbated airway
inflammation during reinfection of neonatally primed mice in
adulthood. J Med Virol. 89:2108–2115. 2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Xuekun H, Qintai Y, Yulian C and Gehua Z:
Correlation of gammadelta-T-cells, Th17 cells and IL-17 in
peripheral blood of patients with allergic rhinitis. Asian Pac J
Allergy Immunol. 32:235–239. 2014.PubMed/NCBI View Article : Google Scholar
|
22
|
Yang Q, Li C, Wang W, Zheng R, Huang X,
Deng H, Jin P, Tan K, Yan Y and Wang D: Infiltration pattern of
gammadelta T cells and its association with local inflammatory
response in the nasal mucosa of patients with allergic rhinitis.
Int Forum Allergy Rhinol. 9:1318–1326. 2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Bajoriuniene I, Malakauskas K, Lavinskiene
S, Jeroch J, Gasiuniene E, Vitkauskiene A and Sakalauskas R:
Response of peripheral blood Th17 cells to inhaled
Dermatophagoides pteronyssinus in patients with allergic
rhinitis and asthma. Lung. 190:487–495. 2012.PubMed/NCBI View Article : Google Scholar
|
24
|
König K, Klemens C, Eder K, San Nicoló M,
Becker S, Kramer MF and Gröger M: Cytokine profiles in nasal fluid
of patients with seasonal or persistent allergic rhinitis. Allergy
Asthma Clin Immunol. 11(26)2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Baeten D, Van Damme N, Van den Bosch F,
Kruithof E, De Vos M, Mielants H, Veys EM and De Keyser F: Impaired
Th1 cytokine production in spondyloarthropathy is restored by
anti-TNFalpha. Ann Rheum Dis. 60:750–755. 2001.PubMed/NCBI View Article : Google Scholar
|
26
|
Migalovich Sheikhet H, Villacorta Hidalgo
J, Fisch P, Balbir-Gurman A, Braun-Moscovici Y and Bank I:
Dysregulated CD25 and cytokine expression by γδ T cells of systemic
sclerosis patients stimulated with cardiolipin and zoledronate.
Front Immunol. 9(753)2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhao Y, Yang J and Gao YD: Altered
expressions of helper T cell (Th)1, Th2, and Th17 cytokines in
CD8+ and γδ T cells in patients with allergic asthma. J
Asthma. 48:429–436. 2011.PubMed/NCBI View Article : Google Scholar
|
28
|
Born WK and O'Brien RL: γδ T cells
develop, respond and survive-with a little help from CD27. Eur J
Immunol. 41:26–28. 2011.PubMed/NCBI View Article : Google Scholar
|
29
|
Ribot JC, debarros A and Silva-Santos B:
Searching for 'signal 2': Costimulation requirements of γδ T cells.
Cell Mol Life Sci. 68:2345–2355. 2011.PubMed/NCBI View Article : Google Scholar
|
30
|
DeBarros A, Chaves-Ferreira M, d'Orey F,
Ribot JC and Silva-Santos B: CD70-CD27 interactions provide
survival and proliferative signals that regulate T cell
receptor-driven activation of human γδ peripheral blood
lymphocytes. Eur J Immunol. 41:195–201. 2011.PubMed/NCBI View Article : Google Scholar
|
31
|
Lenschow DJ, Walunas TL and Bluestone JA:
CD28/B7 system of T cell costimulation. Annu Rev Immunol.
14:233–258. 1996.PubMed/NCBI View Article : Google Scholar
|
32
|
Smith-Garvin JE, Koretzky GA and Jordan
MS: T cell activation. Annu Rev Immunol. 27:591–619.
2009.PubMed/NCBI View Article : Google Scholar
|
33
|
Sakaguchi S, Sakaguchi N, Asano M, Itoh M
and Toda M: Pillars article: Immunologic self-tolerance maintained
by activated T cells expressing IL-2 receptor α-chains (CD25).
Breakdown of a single mechanism of self-tolerance causes various
autoimmune diseases. J. Immunol. 1995. J Immunol. 186:3808–3821.
2011.PubMed/NCBI
|
34
|
Palomares O, Martin-Fontecha M, Lauener R,
Traidl-Hoffmann C, Cavkaytar O, Akdis M and Akdis CA: Regulatory T
cells and immune regulation of allergic diseases: Roles of IL-10
and TGF-β. Genes Immun. 15:511–520. 2014.PubMed/NCBI View Article : Google Scholar
|
35
|
van de Veen W, Wirz OF, Globinska A and
Akdis M: Novel mechanisms in immune tolerance to allergens during
natural allergen exposure and allergen-specific immunotherapy. Curr
Opin Immunol. 48:74–81. 2017.PubMed/NCBI View Article : Google Scholar
|
36
|
Zheng R, Wu X, Huang X, Chen Y, Yang Q, Li
Y and Zhang G: Gene expression pattern of Treg and TCR Vγ subfamily
T cells before and after specific immunotherapy in allergic
rhinitis. J Transl Med. 12(24)2014.PubMed/NCBI View Article : Google Scholar
|
37
|
Hori S, Nomura T and Sakaguchi S: Pillars
article: Control of regulatory T cell development by the
transcription factor Foxp3. Science 2003 299: 1057-1061. J Immunol.
198:981–985. 2017.PubMed/NCBI
|
38
|
Xue M, Liang H, Tang Q, Xue C, He X, Zhang
L, Zhang Z, Liang Z, Bian K, Zhang L and Li Z: The protective and
immunomodulatory effects of fucoidan against 7,12-Dimethyl
benz[a]anthracene-induced experimental mammary carcinogenesis
through the PD1/PDL1 signaling pathway in rats. Nutr Cancer.
69:1234–1244. 2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Zhang X, Huang T and Wu Y, Peng W, Xie H,
Pan M, Zhou H, Cai B and Wu Y: Inhibition of the PI3K-Akt-mTOR
signaling pathway in T lymphocytes in patients with active
tuberculosis. Int J Infect Dis. 59:110–117. 2017.PubMed/NCBI View Article : Google Scholar
|