1
|
World Health Organization (WHO): WHO
Coronavirus Disease (COVID-19) Dashboard. WHO, Geneva, 2020.
urihttps://covid19.who.int/.Accessedsimplehttps://covid19.who.int/.Accessed
October 7, 2020.
|
2
|
Giustino V, Parroco AM, Gennaro A,
Musumeci G, Palma A and Battaglia G: Physical activity levels and
related energy expenditure during COVID-19 quarantine among the
Sicilian active population: A Cross-Sectional Online Survey Study.
Sustainability. 12(4356)2020.
|
3
|
Paoli A and Musumeci G: Elite Athletes and
COVID-19 lockdown: Future health concerns for an entire sector. J
Funct Morphol Kinesiol. 5(30)2020.
|
4
|
Maugeri G, Castrogiovanni P, Battaglia G,
Pippi R, D'Agata V, Palma A, Di Rosa M and Musumeci G: The impact
of physical activity on psychological health during Covid-19
pandemic in Italy. Heliyon. 6(e04315)2020.
|
5
|
Ravalli S and Musumeci G: Coronavirus
Outbreak in Italy: Physiological benefits of home-based exercise
during pandemic. J Funct Morphol Kinesiol. 5(31)2020.
|
6
|
Zhai P, Ding Y, Wu X, Long J, Zhong Y and
Li Y: The epidemiology, diagnosis and treatment of COVID-19. Int J
Antimicrob Agents. 55(105955)2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Chen N, Zhou M, Dong X, Qu J, Gong F, Han
Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: A descriptive study. Lancet. 395:507–513.
2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Petrakis D, Margină D, Tsarouhas K, Tekos
F, Stan M, Nikitovic D, Kouretas D, Spandidos DA and Tsatsakis A:
Obesity-a risk factor for increased COVID-19 prevalence, severity
and lethality. Mol Med Rep. 22:9–19. 2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Goumenou M, Sarigiannis D, Tsatsakis A,
Anesti O, Docea AO, Petrakis D, Tsoukalas D, Kostoff R, Rakitskii
V, Spandidos DA, et al: COVID-19 in Northern Italy: An integrative
overview of factors possibly influencing the sharp increase of the
outbreak (Review). Mol Med Rep. 22:20–32. 2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Lai CC, Shih TP, Ko WC, Tang HJ and Hsueh
PR: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
and coronavirus disease-2019 (COVID-19): The epidemic and the
challenges. Int J Antimicrob Agents. 55(105924)2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Nitulescu GM, Paunescu H, Moschos SA,
Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK,
Drakoulis N and Tsatsakis A: Comprehensive analysis of drugs to
treat SARS-CoV-2 infection: Mechanistic insights into current
COVID-19 therapies (Review). Int J Mol Med. 46:467–488.
2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Li H, Zhou Y, Zhang M, Wang H, Zhao Q and
Liu J: Updated approaches against SARS-CoV-2. Antimicrob Agents
Chemother. 64:e00483–20. 2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Yeo C, Kaushal S and Yeo D: Enteric
involvement of coronaviruses: Is faecal-oral transmission of
SARS-CoV-2 possible? Lancet Gastroenterol Hepatol. 5:335–337.
2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Dehelean CA, Lazureanu V, Coricovac D,
Mioc M, Oancea R, Marcovici I, Pinzaru I, Soica C, Tsatsakis AM and
Cretu O: SARS-CoV-2: Repurposed drugs and novel therapeutic
approaches-insights into chemical structure-biological activity and
toxicological screening. J Clin Med. 9(2084)2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Calina D, Docea AO, Petrakis D, Egorov AM,
Ishmukhametov AA, Gabibov AG, Shtilman MI, Kostoff R, Carvalho F,
Vinceti M, et al: Towards effective COVID-19 vaccines: Updates,
perspectives and challenges (Review). Int J Mol Med. 46:3–16.
2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Ren J, Zhang AH and Wang XJ: Traditional
Chinese medicine for COVID-19 treatment. Pharmacol Res.
155(104743)2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Runfeng L, Yunlong H, Jicheng H, Weiqi P,
Qinhai M, Yongxia S, Chufang L, Jin Z, Zhenhua J, Haiming J, et al:
Lianhuaqingwen exerts anti-viral and anti-inflammatory activity
against novel coronavirus (SARS-CoV-2). Pharmacol Res.
156(104761)2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Wang B, Timilsena YP, Blanch E and
Adhikari B: Lactoferrin: Structure, function, denaturation and
digestion. Crit Rev Food Sci Nutr. 59:580–596. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Baveye S, Elass E, Mazurier J, Spik G and
Legrand D: Lactoferrin: A multifunctional glycoprotein involved in
the modulation of the inflammatory process. Clin Chem Lab Med.
37:281–286. 1999.PubMed/NCBI View Article : Google Scholar
|
20
|
Lönnerdal B and Iyer S: Lactoferrin:
Molecular structure and biological function. Annu Rev Nutr.
15:93–110. 1995.PubMed/NCBI View Article : Google Scholar
|
21
|
Redwan EM, Uversky VN, El-Fakharany EM and
Al-Mehdar H: Potential lactoferrin activity against pathogenic
viruses. C R Biol. 337:581–595. 2014.PubMed/NCBI View Article : Google Scholar
|
22
|
Khan JA, Kumar P, Paramasivam M, Yadav RS,
Sahani MS, Sharma S, Srinivasan A and Singh TP: Camel lactoferrin,
a transferrin-cum-lactoferrin: Crystal structure of camel
apolactoferrin at 2.6 A resolution and structural basis of its dual
role. J Mol Biol. 309:751–761. 2001.PubMed/NCBI View Article : Google Scholar
|
23
|
González-Chávez SA, Arévalo-Gallegos S and
Rascón-Cruz Q: Lactoferrin: Structure, function and applications.
Int J Antimicrob Agents. 33:301.e1–e8. 2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Moreno-Expósito L, Illescas-Montes R,
Melguizo-Rodríguez L, Ruiz C, Ramos-Torrecillas J and de
Luna-Bertos E: Multifunctional capacity and therapeutic potential
of lactoferrin. Life Sci. 195:61–64. 2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Hao L, Shan Q, Wei J, Ma F and Sun P:
Lactoferrin: Major physiological functions and applications. Curr
Protein Pept Sci. 20:139–144. 2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Elass-Rochard E, Legrand D, Salmon V,
Roseanu A, Trif M, Tobias PS, Mazurier J and Spik G: Lactoferrin
inhibits the endotoxin interaction with CD14 by competition with
the lipopolysaccharide-binding protein. Infect Immun. 66:486–491.
1998.PubMed/NCBI View Article : Google Scholar
|
27
|
Lu L, Hangoc G, Oliff A, Chen LT, Shen RN
and Broxmeyer HE: Protective influence of lactoferrin on mice
infected with the polycythemia-inducing strain of friend virus
complex. Cancer Res. 47:4184–4188. 1987.PubMed/NCBI
|
28
|
Oda H, Wakabayashi H, Tanaka M, Yamauchi
K, Sugita C, Yoshida H, Abe F, Sonoda T and Kurokawa M: Effects of
lactoferrin on infectious diseases in Japanese summer: A
randomized, double-blinded, placebo-controlled trial. J Microbiol
Immunol Infect, Feb 26, 2020 (Online ahead of print).
|
29
|
Sano H, Nagai K, Tsutsumi H and Kuroki Y:
Lactoferrin and surfactant protein A exhibit distinct binding
specificity to F protein and differently modulate respiratory
syncytial virus infection. Eur J Immunol. 33:2894–2902.
2003.PubMed/NCBI View Article : Google Scholar
|
30
|
Pietrantoni A, Di Biase AM, Tinari A,
Marchetti M, Valenti P, Seganti L and Superti F: Bovine lactoferrin
inhibits adenovirus infection by interacting with viral structural
polypeptides. Antimicrob Agents Chemother. 47:2688–2691.
2003.PubMed/NCBI View Article : Google Scholar
|
31
|
Lang J, Yang N, Deng J, Liu K, Yang P,
Zhang G and Jiang C: Inhibition of SARS pseudovirus cell entry by
lactoferrin binding to heparan sulfate proteoglycans. PLoS One.
6(e23710)2011.PubMed/NCBI View Article : Google Scholar
|
32
|
Chen JM, Fan YC, Lin JW, Chen YY, Hsu WL
and Chiou SS: Bovine lactoferrin inhibits dengue virus infectivity
by interacting with heparan sulfate, low-density lipoprotein
receptor, and DC-SIGN. Int J Mol Sci. 18(1957)2017.PubMed/NCBI View Article : Google Scholar
|
33
|
Weng TY, Chen LC, Shyu HW, Chen SH, Wang
JR, Yu CK, Lei HY and Yeh TM: Lactoferrin inhibits enterovirus 71
infection by binding to VP1 protein and host cells. Antiviral Res.
67:31–37. 2005.PubMed/NCBI View Article : Google Scholar
|
34
|
Pietrantoni A, Fortuna C, Remoli ME,
Ciufolini ME and Superti F: Bovine lactoferrin inhibits Toscana
virus infection by binding to heparan sulphate. Viruses. 7:480–495.
2015.PubMed/NCBI View
Article : Google Scholar
|
35
|
Beljaars L, van der Strate BW, Bakker HI,
Reker-Smit C, van Loenen-Weemaes AM, Wiegmans FC, Harmsen MC,
Molema G and Meijer DK: Inhibition of cytomegalovirus infection by
lactoferrin in vitro and in vivo. Antiviral Res. 63:197–208.
2004.PubMed/NCBI View Article : Google Scholar
|
36
|
Ammendolia MG, Marchetti M and Superti F:
Bovine lactoferrin prevents the entry and intercellular spread of
herpes simplex virus type 1 in green Monkey kidney cells. Antiviral
Res. 76:252–262. 2007.PubMed/NCBI View Article : Google Scholar
|
37
|
Ishikawa H, Awano N, Fukui T, Sasaki H and
Kyuwa S: The protective effects of lactoferrin against murine
norovirus infection through inhibition of both viral attachment and
replication. Biochem Biophys Res Commun. 434:791–796.
2013.PubMed/NCBI View Article : Google Scholar
|
38
|
Vellingiri B, Jayaramayya K, Iyer M,
Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S, Venugopal
A, Venkatesan D, Ganesan H, et al: COVID-19: A promising cure for
the global panic. Sci Total Environ. 725(138277)2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S,
Zhang Q, Shi X, Wang Q, Zhang L and Wang X: Structure of the
SARS-CoV-2 spike receptor-binding domain bound to the ACE2
receptor. Nature. 581:215–220. 2020.PubMed/NCBI View Article : Google Scholar
|
40
|
van der Strate BW, Beljaars L, Molema G,
Harmsen MC and Meijer DK: Antiviral activities of lactoferrin.
Antiviral Res. 52:225–239. 2001.PubMed/NCBI View Article : Google Scholar
|
41
|
Baker EN and Baker HM: Molecular
structure, binding properties and dynamics of lactoferrin. Cell Mol
Life Sci. 62:2531–2539. 2005.PubMed/NCBI View Article : Google Scholar
|
42
|
Kamhi E, Joo EJ, Dordick JS and Linhardt
RJ: Glycosaminoglycans in infectious disease. Biol Rev Camb Philos
Soc. 88:928–943. 2013.PubMed/NCBI View Article : Google Scholar
|
43
|
Cagno V, Tseligka ED, Jones ST and
Tapparel C: Heparan sulfate proteoglycans and viral attachment:
True receptors or adaptation bias? Viruses. 11(596)2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Bernard KA, Klimstra WB and Johnston RE:
Mutations in the E2 glycoprotein of Venezuelan equine encephalitis
virus confer heparan sulfate interaction, low morbidity, and rapid
clearance from blood of mice. Virology. 276:93–103. 2000.PubMed/NCBI View Article : Google Scholar
|
45
|
Goodfellow IG, Sioofy AB, Powell RM and
Evans DJ: Echoviruses bind heparan sulfate at the cell surface. J
Virol. 75:4918–4921. 2001.PubMed/NCBI View Article : Google Scholar
|
46
|
Li P, Sheng J, Liu Y, Li J, Liu J and Wang
F: Heparosan-derived heparan sulfate/heparin-like compounds: One
kind of potential therapeutic agents. Med Res Rev. 33:665–692.
2013.PubMed/NCBI View Article : Google Scholar
|
47
|
Zheng J: SARS-CoV-2: An emerging
coronavirus that causes a global threat. Int J Biol Sci.
16:1678–1685. 2020.PubMed/NCBI View Article : Google Scholar
|
48
|
Bartlam M, Yang H and Rao Z: Structural
insights into SARS coronavirus proteins. Curr Opin Struct Biol.
15:664–672. 2005.PubMed/NCBI View Article : Google Scholar
|
49
|
Belting M: Heparan sulfate proteoglycan as
a plasma membrane carrier. Trends Biochem Sci. 28:145–151.
2003.PubMed/NCBI View Article : Google Scholar
|
50
|
Carvalho CAM, Sousa IP Jr, Silva JL,
Oliveira AC, Gonçalves RB and Gomes AMO: Inhibition of Mayaro virus
infection by bovine lactoferrin. Virology. 452-453:297–302.
2014.PubMed/NCBI View Article : Google Scholar
|
51
|
Jenssen H and Hancock RE: Antimicrobial
properties of lactoferrin. Biochimie. 91:19–29. 2009.PubMed/NCBI View Article : Google Scholar
|
52
|
Yan R, Zhang Y, Li Y, Xia L, Guo Y and
Zhou Q: Structural basis for the recognition of SARS-CoV-2 by
full-length human ACE2. Science. 367:1444–1448. 2020.PubMed/NCBI View Article : Google Scholar
|
53
|
Gao C, Zeng J, Jia N, Stavenhagen K,
Matsumoto Y, Zhang H, Li J, Hume AJ, Mühlberger E, van Die I, et
al: SARS-CoV-2 spike protein interacts with multiple innate
immune receptors. bioRxiv: 2020.07.29.227462, 2020.
|
54
|
Brufsky A and Lotze MT: DC/L-SIGNs of hope
in the COVID-19 pandemic. J Med Virol, May 6, 2020 (Online ahead of
print).
|
55
|
Han DP, Lohani M and Cho MW: Specific
asparagine-linked glycosylation sites are critical for DC-SIGN- and
L-SIGN-mediated severe acute respiratory syndrome coronavirus
entry. J Virol. 81:12029–12039. 2007.PubMed/NCBI View Article : Google Scholar
|
56
|
Ahlawat S and Asha Sharma KK:
Immunological co-ordination between gut and lungs in SARS-CoV-2
infection. Virus Res. 286(198103)2020.PubMed/NCBI View Article : Google Scholar
|
57
|
Dai YJ, Hu F, Li H, Huang HY, Wang DW and
Liang Y: A profiling analysis on the receptor ACE2 expression
reveals the potential risk of different type of cancers vulnerable
to SARS-CoV-2 infection. Ann Transl Med. 8(481)2020.PubMed/NCBI View Article : Google Scholar
|
58
|
Puddu P, Carollo MG, Belardelli F, Valenti
P and Gessani S: Role of endogenous interferon and LPS in the
immunomodulatory effects of bovine lactoferrin in murine peritoneal
macrophages. J Leukoc Biol. 82:347–353. 2007.PubMed/NCBI View Article : Google Scholar
|
59
|
Puddu P, Valenti P and Gessani S:
Immunomodulatory effects of lactoferrin on antigen presenting
cells. Biochimie. 91:11–18. 2009.PubMed/NCBI View Article : Google Scholar
|
60
|
Siqueiros-Cendón T, Arévalo-Gallegos S,
Iglesias-Figueroa BF, García-Montoya IA, Salazar-Martínez J and
Rascón-Cruz Q: Immunomodulatory effects of lactoferrin. Acta
Pharmacol Sin. 35:557–566. 2014.PubMed/NCBI View Article : Google Scholar
|
61
|
Actor JK, Hwang SA and Kruzel ML:
Lactoferrin as a natural immune modulator. Curr Pharm Des.
15:1956–1973. 2009.PubMed/NCBI View Article : Google Scholar
|
62
|
Liu KY, Comstock SS, Shunk JM, Monaco MH
and Donovan SM: Natural killer cell populations and cytotoxic
activity in pigs fed mother's milk, formula, or formula
supplemented with bovine lactoferrin. Pediatr Res. 74:402–407.
2013.PubMed/NCBI View Article : Google Scholar
|
63
|
MacManus CF, Collins CB, Nguyen TT, Alfano
RW, Jedlicka P and de Zoeten EF: VEN-120, a recombinant human
lactoferrin, promotes a regulatory T cell [Treg] phenotype and
drives resolution of inflammation in distinct murine models of
inflammatory bowel disease. J Crohns Colitis. 11:1101–1112.
2017.PubMed/NCBI View Article : Google Scholar
|
64
|
Kuhara T, Yamauchi K, Tamura Y and Okamura
H: Oral administration of lactoferrin increases NK cell activity in
mice via increased production of IL-18 and type I IFN in the small
intestine. J Interferon Cytokine Res. 26:489–499. 2006.PubMed/NCBI View Article : Google Scholar
|
65
|
Haller O, Kochs G and Weber F: The
interferon response circuit: Induction and suppression by
pathogenic viruses. Virology. 344:119–130. 2006.PubMed/NCBI View Article : Google Scholar
|
66
|
Legrand D: Overview of lactoferrin as a
natural immune modulator. J Pediatr. 173 (Suppl):S10–S15.
2016.PubMed/NCBI View Article : Google Scholar
|
67
|
Wakabayashi H, Oda H, Yamauchi K and Abe
F: Lactoferrin for prevention of common viral infections. J Infect
Chemother. 20:666–671. 2014.PubMed/NCBI View Article : Google Scholar
|
68
|
Borchers AT, Chang C, Gershwin ME and
Gershwin LJ: Respiratory syncytial virus-a comprehensive review.
Clin Rev Allergy Immunol. 45:331–379. 2013.PubMed/NCBI View Article : Google Scholar
|
69
|
Berlutti F, Pantanella F, Natalizi T,
Frioni A, Paesano R, Polimeni A and Valenti P: Antiviral properties
of lactoferrin-a natural immunity molecule. Molecules.
16:6992–7018. 2011.PubMed/NCBI View Article : Google Scholar
|
70
|
Legrand D, Elass E, Carpentier M and
Mazurier J: Lactoferrin: A modulator of immune and inflammatory
responses. Cell Mol Life Sci. 62:2549–2559. 2005.PubMed/NCBI View Article : Google Scholar
|