Investigational drugs with dual activity against HBV and HIV (Review)
- Authors:
- Shiyu Sun
- Qing Yang
- Yunjian Sheng
- Yi Fu
- Changfeng Sun
- Cunliang Deng
-
Affiliations: Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China - Published online on: November 11, 2020 https://doi.org/10.3892/etm.2020.9467
- Article Number: 35
-
Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Singh KP, Crane M, Audsley J, Avihingsanon A, Sasadeusz J and Lewin SR: HIV-hepatitis B virus coinfection: Epidemiology, pathogenesis, and treatment. AIDS. 31:2035–2052. 2017.PubMed/NCBI View Article : Google Scholar | |
Nikolopoulos GK, Paraskevis D, Hatzitheodorou E, Moschidis Z, Sypsa V, Zavitsanos X, Kalapothaki V and Hatzakis A: Impact of hepatitis B virus infection on the progression of AIDS and mortality in HIV-infected individuals: A cohort study and meta-analysis. Clin Infect Dis. 48:1763–1771. 2009.PubMed/NCBI View Article : Google Scholar | |
Naing C, Poovorawan Y and Tong K: Comparative effectiveness of anti-viral drugs with dual activity for treating hepatitis B and HIV co-infected patients: A network meta-analysis. BMC Infect Dis. 18(564)2018.PubMed/NCBI View Article : Google Scholar | |
Levy V and Grant R: Antiretroviral therapy for hepatitis B virus-HIV-coinfected patients: Promises and pitfalls. Clin Infect Dis. 43:904–910. 2006.PubMed/NCBI View Article : Google Scholar | |
Sun HY, Sheng WH, Tsai MS, Lee KY, Chang SY and Hung CC: Hepatitis B virus coinfection in human immunodeficiency virus-infected patients: A review. World J Gastroenterol. 20:14598–14614. 2014.PubMed/NCBI View Article : Google Scholar | |
Núñez M, Puoti M, Camino N and Soriano V: Treatment of chronic hepatitis B in the human immunodeficiency virus-infected patient: Present and future. Clin Infect Dis. 37:1678–1685. 2003.PubMed/NCBI View Article : Google Scholar | |
Mendes-Corrêa M and Núñez M: Management of HIV and hepatitis virus coinfection. Expert Opin Pharmacother. 11:2497–2516. 2010.PubMed/NCBI View Article : Google Scholar | |
Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. World Health Organization [updated June 2013]. urihttps://www.who.int/hiv/pub/guidelines/arv2013/art/WHO_CG_table_7.1.pdf?ua=1simplehttps://www.who.int/hiv/pub/guidelines/arv2013/art/WHO_CG_table_7.1.pdf?ua=1. Accessed October 22, 2020. | |
AIDS and Hepatitis C Professional Group, Society of Infectious Diseases, Chinese Medical Association; Chinese Center for Disease Control and Prevention. Chinese guidelines for diagnosis and treatment of HIV/AIDS (2018). Zhonghua Nei Ke Za Zhi. 57:867–884. 2018.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Lin JJ, Lin KY, Tang HJ, Lin SP, Lee YC, Liu CE, Huang YS, Wang NC, Li CW, Ko WC, et al: Hepatitis B virus seroprevalence among HIV-infected patients receiving combination antiretroviral therapy three decades after universal neonatal hepatitis B immunization program in Taiwan. J Microbiol Immunol Infect: Oct 30, 2019 (Epub ahead of print). doi: 10.1016/j.jmii.2019.10.005. | |
Lai CL and Yuen MF: Management of chronic hepatitis B in patients from special populations. Cold Spring Harb Perspect Med. 5(a021527)2015.PubMed/NCBI View Article : Google Scholar | |
Lieveld FI, Smit C, Richter C, van Erpecum KJ, Spanier BWM, Gisolf EH, Vrolijk JM, Siersema PD, Hoepelman AIM, Reiss P and Arends JE: Liver decompensation in HIV/Hepatitis B coinfection in the combination antiretroviral therapy era does not seem increased compared to hepatitis B mono-infection. Liver Int. 39:470–483. 2019.PubMed/NCBI View Article : Google Scholar | |
Dore GJ, Soriano V, Rockstroh J, Kupfer B, Tedaldi E, Peters L, Neuhaus J, Puoti M, Klein MB, Mocroft A, et al: Frequent hepatitis B virus rebound among HIV-hepatitis B virus-coinfected patients following antiretroviral therapy interruption. AIDS. 24:857–865. 2010.PubMed/NCBI View Article : Google Scholar | |
Shilaih M, Marzel A, Scherrer AU, Braun DL, Kovari H, Rougemont M, Darling K, Battegay M, Hoffmann M, Bernasconi E, et al: Dually Active HIV/HBV antiretrovirals as protection against incident hepatitis B infections: Potential for prophylaxis. J Infect Dis. 214:599–606. 2016.PubMed/NCBI View Article : Google Scholar | |
Soriano V, Barreiro P, Benitez L, Peña JM and de Mendoza C: New antivirals for the treatment of chronic hepatitis B. Expert Opin Investig Drugs. 26:843–851. 2017.PubMed/NCBI View Article : Google Scholar | |
Fosdick A, Zheng J, Pflanz S, Frey CR, Hesselgesser J, Halcomb RL, Wolfgang G and Tumas DB: Pharmacokinetic and pharmacodynamic properties of GS-9620, a novel Toll-like receptor 7 agonist, demonstrate interferon-stimulated gene induction without detectable serum interferon at low oral doses. J Pharmacol Exp Ther. 348:96–105. 2014.PubMed/NCBI View Article : Google Scholar | |
Menne S, Tumas DB, Liu KH, Thampi L, AlDeghaither D, Baldwin BH, Bellezza CA, Cote PJ, Zheng J, Halcomb R, et al: Sustained efficacy and seroconversion with the Toll-like receptor 7 agonist GS-9620 in the Woodchuck model of chronic hepatitis B. J Hepatol. 62:1237–1245. 2015.PubMed/NCBI View Article : Google Scholar | |
Lanford RE, Guerra B, Chavez D, Giavedoni L, Hodara VL, Brasky KM, Fosdick A, Frey CR, Zheng J, Wolfgang G, et al: GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology. 144:1508–1517, 1517e1-e10. 2013.PubMed/NCBI View Article : Google Scholar | |
Niu C, Li L, Daffis S, Lucifora J, Bonnin M, Maadadi S, Salas E, Chu R, Ramos H, Livingston CM, et al: Toll-like receptor 7 agonist GS-9620 induces prolonged inhibition of HBV via a type I interferon-dependent mechanism. J Hepatol. 68:922–931. 2018.PubMed/NCBI View Article : Google Scholar | |
Janssen HLA, Brunetto MR, Kim YJ, Ferrari C, Massetto B, Nguyen AH, Joshi A, Woo J, Lau AH, Gaggar A, et al: Safety, efficacy and pharmacodynamics of vesatolimod (GS-9620) in virally suppressed patients with chronic hepatitis B. J Hepatol. 68:431–440. 2018.PubMed/NCBI View Article : Google Scholar | |
Boni C, Vecchi A, Rossi M, Laccabue D, Giuberti T, Alfieri A, Lampertico P, Grossi G, Facchetti F, Brunetto MR, et al: TLR7 agonist increases responses of hepatitis B virus-specific T cells and natural killer cells in patients with chronic hepatitis B treated with nucleos(T)ide analogues. Gastroenterology. 154:1764–1777.e7. 2018.PubMed/NCBI View Article : Google Scholar | |
Agarwal K, Ahn SH, Elkhashab M, Lau AH, Gaggar A, Bulusu A, Tian X, Cathcart AL, Woo J, Subramanian GM, et al: Safety and efficacy of vesatolimod (GS-9620) in patients with chronic hepatitis B who are not currently on antiviral treatment. J Viral Hepat. 25:1331–1340. 2018.PubMed/NCBI View Article : Google Scholar | |
Offersen R, Nissen SK, Rasmussen TA, Østergaard L, Denton PW, Søgaard OS and Tolstrup M: A novel toll-like receptor 9 agonist, MGN1703, enhances HIV-1 transcription and NK cell-mediated inhibition of HIV-1-infected autologous CD4+ T cells. J Virol. 90:4441–4453. 2016.PubMed/NCBI View Article : Google Scholar | |
Tsai A, Irrinki A, Kaur J, Cihlar T, Kukolj G, Sloan DD and Murry JP: Toll-like receptor 7 agonist GS-9620 induces HIV expression and HIV-specific immunity in cells from HIV-infected individuals on suppressive antiretroviral therapy. J Virol. 91:e02166–16. 2017.PubMed/NCBI View Article : Google Scholar | |
Sloan DD, Irrinki A, Tsai A, Kaur J, Lalezari J, Murry J and Cihlar T: TLR7 agonist GS-9620 activates HIV-1 in PBMCs from HIV-infected patients on cART. 22nd Annu Conf Retrovir Opportunist Infect, Seattle, WA, abs. 417, February 23-26, 2015. urihttps://www.croiconference.org/abstract/tlr7-agonist-gs-9620-activates-hiv-1-pbmcs-hiv-infected-patients-cart/simplehttps://www.croiconference.org/abstract/tlr7-agonist-gs-9620-activates-hiv-1-pbmcs-hiv-infected-patients-cart/. | |
Ram RR, Duatschek P, Margot N, Abram M, Geleziunas R, Hesselgesser J and Callebaut C: Activation of HIV-specific CD8+ T-cells from HIV+ donors by vesatolimod. Antivir Ther: May 18, 2020 (Epub ahead of print). doi: 10.3851/IMP3359. | |
Lim SY, Osuna CE, Hraber PT, Hesselgesser J, Gerold JM, Barnes TL, Sanisetty S, Seaman MS, Lewis MG, Geleziunas R, et al: TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy. Sci Transl Med. 10(eaao4521)2018.PubMed/NCBI View Article : Google Scholar | |
Borducchi EN, Liu J, Nkolola JP, Cadena AM, Yu WH, Fischinger S, Broge T, Abbink P, Mercado NB, Chandrashekar A, et al: Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature. 563:360–364. 2018.PubMed/NCBI View Article : Google Scholar | |
Riddler S, Para M, Benson C, Mills A, Ramgopal M, Dejesus E, Brinson C, Cyktor J, Mellors J, Guo S, et al: Vesatolimod (GS-9620) is safe and pharmacodynamically active in HIV infected individuals. 10th International AIDS Society Conference on HIV Science (IAS 2019), Mexico City. abstract WEAA0304, 2019. urihttps://www.natap.org/2019/IAS/IAS_47.htmsimplehttps://www.natap.org/2019/IAS/IAS_47.htm. | |
Li SY, Li H, Xiong YL, Liu F, Peng ML, Zhang DZ, Ren H and Hu P: Peginterferon is preferable to entecavir for prevention of unfavourable events in patients with HBeAg-positive chronic hepatitis B: A five-year observational cohort study. J Viral Hepat. 24 (Suppl 1):12–20. 2017.PubMed/NCBI View Article : Google Scholar | |
Azzoni L, Foulkes AS, Papasavvas E, Mexas AM, Lynn KM, Mounzer K, Tebas P, Jacobson JM, Frank I, Busch MP, et al: Pegylated Interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J Infect Dis. 207:213–222. 2013.PubMed/NCBI View Article : Google Scholar | |
Sun H, Buzon MJ, Shaw A, Berg RK, Yu XG, Ferrando-Martinez S, Leal M, Ruiz-Mateos E and Lichterfeld M: Hepatitis C therapy with interferon-α and ribavirin reduces CD4 T-cell-associated HIV-1 DNA in HIV-1/hepatitis C virus-coinfected patients. J Infect Dis. 209:1315–1320. 2014.PubMed/NCBI View Article : Google Scholar | |
Jiao YM, Weng WJ, Gao QS, Zhu WJ, Cai WP, Li LH, Li HJ, Gao YQ and Wu H: Hepatitis C therapy with interferon-α and ribavirin reduces the CD4 cell count and the total, 2LTR circular and integrated HIV-1 DNA in HIV/HCV co-infected patients. Antiviral Res. 118:118–122. 2015.PubMed/NCBI View Article : Google Scholar | |
Dianzani F, Rozera G, Abbate I, D'Offizi G, Abdeddaim A, Vlassi C, Antonucci G, Narciso P, Martini F and Capobianchi MR: Interferon may prevent HIV viral rebound after HAART interruption in HIV patients. J Interferon Cytokine Res. 28:1–3. 2008.PubMed/NCBI View Article : Google Scholar | |
Asmuth DM, Murphy RL, Rosenkranz SL, Lertora JJ, Kottilil S, Cramer Y, Chan ES, Schooley RT, Rinaldo CR, Thielman N, et al: Safety, tolerability, and mechanisms of antiretroviral activity of pegylated interferon Alfa-2a in HIV-1-monoinfected participants: A phase II clinical trial. J Infect Dis. 201:1686–1696. 2010.PubMed/NCBI View Article : Google Scholar | |
Tavel JA, Huang CY, Shen J, Metcalf JA, Dewar R, Shah A, Vasudevachari MB, Follmann DA, Herpin B, Davey RT, et al: Interferon-alpha produces significant decreases in HIV load. J Interferon Cytokine Res. 30:461–464. 2010.PubMed/NCBI View Article : Google Scholar | |
Frissen PH, de Wolf F, Reiss P, Bakker PJ, Veenhof CH, Danner SA, Goudsmit J and Lange JM: High-dose interferon-alpha2a exerts potent activity against human immunodeficiency virus type 1 not associated with antitumor activity in subjects with Kaposi's sarcoma. J Infect Dis. 176:811–814. 1997.PubMed/NCBI View Article : Google Scholar | |
Haas DW, Lavelle J, Nadler JP, Greenberg SB, Frame P, Mustafa N, St Clair M, McKinnis R, Dix L, Elkins M and Rooney J: A randomized trial of interferon alpha therapy for HIV type 1 infection. AIDS Res Hum Retroviruses. 16:183–190. 2000.PubMed/NCBI View Article : Google Scholar | |
Hua S, Vigano S, Tse S, Zhengyu O, Harrington S, Negron J, Garcia-Broncano P, Marchetti G, Genebat M, Leal M, et al: Pegylated interferon-α-induced natural killer cell activation is associated with human immunodeficiency virus-1 DNA decline in antiretroviral therapy-treated HIV-1/hepatitis C virus-coinfected patients. Clin Infect Dis. 66:1910–1917. 2018.PubMed/NCBI View Article : Google Scholar | |
Montes ML, Schapiro J, Pérez-Valero I, García-Bujalance S and Arribas JR: Long-term control of HIV replication with dolutegravir and pegylated interferon alpha-2a in an HIV-infected patient with sixtuple-class resistance. AIDS. 28:932–934. 2014.PubMed/NCBI View Article : Google Scholar | |
Sandler NG, Bosinger SE, Estes JD, Zhu RT, Tharp GK, Boritz E, Levin D, Wijeyesinghe S, Makamdop KN, del Prete GQ, et al: Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature. 511:601–605. 2014.PubMed/NCBI View Article : Google Scholar | |
Hardy GA, Sieg S, Rodriguez B, Anthony D, Asaad R, Jiang W, Mudd J, Schacker T, Funderburg NT, Pilch-Cooper HA, et al: Interferon-α is the primary plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers. PLoS One. 8(e56527)2013.PubMed/NCBI View Article : Google Scholar | |
Fraietta JA, Mueller YM, Yang G, Boesteanu AC, Gracias DT, Do DH, Hope JL, Kathuria N, McGettigan SE, Lewis MG, et al: Type I interferon upregulates Bak and contributes to T cell loss during human immunodeficiency virus (HIV) infection. PLoS Pathog. 9(e1003658)2013.PubMed/NCBI View Article : Google Scholar | |
Cheng L, Ma J, Li J, Li D, Li G, Li F, Zhang Q, Yu H, Yasui F, Ye C, et al: Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs. J Clin Invest. 127:269–279. 2017.PubMed/NCBI View Article : Google Scholar | |
D'Offizi G, Gioia C, Corpolongo A, Martini F, Paganelli R, Volpi I, Sacchi A, Tozzi V, Narciso P and Poccia F: An IL-15 dependent CD8 T cell response to selected HIV epitopes is related to viral control in early-treated HIV-infected subjects. Int. J Immunopathol Pharmacol. 20:473–485. 2007.PubMed/NCBI View Article : Google Scholar | |
Han W, Ni Q, Liu K, Yao Y, Zhao D, Liu X and Chen Y: Decreased CD122 on CD56dim NK associated with its impairment in asymptomatic chronic HBV carriers with high levels of HBV DNA, HBsAg and HBeAg. Life Sci. 195:53–60. 2018.PubMed/NCBI View Article : Google Scholar | |
Garrido C, Abad-Fernandez M, Tuyishime M, Pollara JJ, Ferrari G, Soriano-Sarabia N and Margolis DM: Interleukin-15-stimulated natural killer cells clear HIV-1-infected cells following latency reversal ex vivo. J Virol. 92(e00235)2018.PubMed/NCBI View Article : Google Scholar | |
Jones RB, Mueller S, O'Connor R, Rimpel K, Sloan DD, Karel D, Wong HC, Jeng EK, Thomas AS, Whitney JB, et al: A subset of latency-reversing agents expose HIV-infected resting CD4+ T-cells to recognition by cytotoxic T-lymphocytes. PLoS Pathog. 12(e1005545)2016.PubMed/NCBI View Article : Google Scholar | |
McBrien JB, Mavigner M, Franchitti L, Smith SA, White E, Tharp GK, Walum H, Busman-Sahay K, Aguilera-Sandoval CR, Thayer WO, et al: Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8+ cells. Nature. 578:154–159. 2020.PubMed/NCBI View Article : Google Scholar | |
Ellis-Connell AL, Balgeman AJ, Zarbock KR, Barry G, Weiler A, Egan JO, Jeng EK, Friedrich T, Miller JS, Haase AT, et al: ALT-803 transiently reduces simian immunodeficiency virus replication in the absence of antiretroviral treatment. J Virol. 92:e01748–17. 2018.PubMed/NCBI View Article : Google Scholar | |
Walter J, Ghosh MK, Kuhn L, Semrau K, Sinkala M, Kankasa C, Thea DM and Aldrovandi GM: High concentrations of interleukin 15 in breast milk are associated with protection against postnatal HIV transmission. J Infect Dis. 200:1498–1502. 2009.PubMed/NCBI View Article : Google Scholar | |
Oh S, Berzofsky JA, Burke DS, Waldmann TA and Perera LP: Coadministration of HIV vaccine vectors with vaccinia viruses expressing IL-15 but not IL-2 induces long-lasting cellular immunity. Proc Natl Acad Sci USA. 100:3392–3397. 2003.PubMed/NCBI View Article : Google Scholar | |
Mueller YM, Do DH, Altork SR, Artlett CM, Gracely EJ, Katsetos CD, Legido A, Villinger F, Altman JD, Brown CR, et al: IL-15 treatment during acute simian immunodeficiency virus (SIV) infection increases viral set point and accelerates disease progression despite the induction of stronger SIV-specific CD8+ T cell responses. J Immunol. 180:350–360. 2008.PubMed/NCBI View Article : Google Scholar | |
Hryniewicz A, Price DA, Moniuszko M, Boasso A, Edghill-Spano Y, West SM, Venzon D, Vaccari M, Tsai WP, Tryniszewska E, et al: Interleukin-15 but not interleukin-7 abrogates vaccine-induced decrease in virus level in simian immunodeficiency virus mac251-infected macaques. J Immunol. 178:3492–3504. 2007.PubMed/NCBI View Article : Google Scholar | |
Swaminathan S, Qiu J, Rupert AW, Hu Z, Higgins J, Dewar RL, Stevens R, Rehm CA, Metcalf JA, Sherman BT, et al: Interleukin-15 (IL-15) strongly correlates with increasing HIV-1 viremia and markers of inflammation. PLoS One. 11(e0167091)2016.PubMed/NCBI View Article : Google Scholar | |
Agostini C, Trentin L, Sancetta R, Facco M, Tassinari C, Cerutti A, Bortolin M, Milani A, Siviero M, Zambello R and Semenzato G: Interleukin-15 triggers activation and growth of the CD8 T-cell pool in extravascular tissues of patients with acquired immunodeficiency syndrome. Blood. 90:1115–1123. 1997.PubMed/NCBI | |
Yin W, Xu L, Sun R, Wei H and Tian Z: Interleukin-15 suppresses hepatitis B virus replication via IFN-β production in a C57BL/6 mouse model. Liver Int. 32:1306–1314. 2012.PubMed/NCBI View Article : Google Scholar | |
Di Scala M, Otano I, Gil-Fariña I, Vanrell L, Hommel M, Olagüe C, Vales A, Galarraga M, Guembe L, Ortiz de Solorzano C, et al: Complementary effects of interleukin-15 and alpha interferon induce immunity in hepatitis B virus transgenic mice. J Virol. 90:8563–8574. 2016.PubMed/NCBI View Article : Google Scholar | |
Ichimura H and Levy JA: Polymerase substrate depletion: A novel strategy for inhibiting the replication of the human immunodeficiency virus. Virology. 211:554–560. 1995.PubMed/NCBI View Article : Google Scholar | |
Margolis D, Heredia A, Gaywee J, Oldach D, Drusano G and Redfield R: Abacavir and mycophenolic acid, an inhibitor of inosine monophosphate dehydrogenase, have profound and synergistic anti-HIV activity. J Acquir Immune Defic Syndr. 21:362–370. 1999.PubMed/NCBI | |
Cohn RG, Mirkovich A, Dunlap B, Burton P, Chiu SH, Eugui E and Caulfield JP: Mycophenolic acid increases apoptosis, lysosomes and lipid droplets in human lymphoid and monocytic cell lines. Transplantation. 68:411–418. 1999.PubMed/NCBI View Article : Google Scholar | |
Allison AC and Eugui EM: Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation. 80 (Suppl 2):S181–S190. 2005.PubMed/NCBI View Article : Google Scholar | |
García F, Plana M, Arnedo M, Brunet M, Castro P, Gil C, Vidal E, Millán O, López A, Martorell J, et al: Effect of mycophenolate mofetil on immune response and plasma and lymphatic tissue viral load during and after interruption of highly active antiretroviral therapy for patients with chronic HIV infection: A randomized pilot study. J Acquir Immune Defic Syndr. 36:823–830. 2004.PubMed/NCBI View Article : Google Scholar | |
Ui H, Asanuma S, Chiba H, Takahashi A, Yamaguchi Y, Masuma R, Omura S and Tanaka H: Mycophenolic acid inhibits syncytium formation accompanied by reduction of gp120 expression. J Antibiot (Tokyo). 58:514–518. 2005.PubMed/NCBI View Article : Google Scholar | |
Margolis DM, Mukherjee AL, Fletcher CV, Hogg E, Ogata-Arakaki D, Petersen T, Rusin D, Martinez A and Mellors JW: The use of beta-D-2,6-diaminopurine dioxolane with or without mycophenolate mofetil in drug-resistant HIV infection. AIDS. 21:2025–2032. 2007.PubMed/NCBI View Article : Google Scholar | |
Kaur R, Klichko V and Margolis D: Ex vivo modeling of the effects of mycophenolic acid on HIV infection: considerations for antiviral therapy. AIDS Res. Hum Retroviruses. 21:116–124. 2005.PubMed/NCBI View Article : Google Scholar | |
Borroto-Esoda K, Myrick F, Feng J, Jeffrey J and Furman P: In vitro combination of amdoxovir and the inosine monophosphate dehydrogenase inhibitors mycophenolic acid and ribavirin demonstrates potent activity against wild-type and drug-resistant variants of human immunodeficiency virus type 1. Antimicrob Agents Chemother. 48:4387–4394. 2004.PubMed/NCBI View Article : Google Scholar | |
Coull JJ, Turner D, Melby T, Betts MR, Lanier R and Margolis DM: A pilot study of the use of mycophenolate mofetil as a component of therapy for multidrug-resistant HIV-1 infection. J Acquir Immune Defic Syndr. 26:423–434. 2001.PubMed/NCBI View Article : Google Scholar | |
Chapuis AG, Paolo Rizzardi G, D'Agostino C, Attinger A, Knabenhans C, Fleury S, Acha-Orbea H and Pantaleo G: Effects of mycophenolic acid on human immunodeficiency virus infection in vitro and in vivo. Nat Med. 6:762–768. 2000.PubMed/NCBI View Article : Google Scholar | |
Jurriaans S, Sankatsing SU, Prins JM, Schuitemaker H, Lange J, Van Der Kuyl AC and Cornelissen M: HIV-1 seroreversion in an HIV-1-seropositive patient treated during acute infection with highly active antiretroviral therapy and mycophenolate mofetil. AIDS. 18:1607–1608. 2004.PubMed/NCBI View Article : Google Scholar | |
Heredia A, Margolis D, Oldach D, Hazen R, Le N and Redfield R: Abacavir in combination with the inosine monophosphate dehydrogenase (IMPDH)-inhibitor mycophenolic acid is active against multidrug-resistant HIV-1. J Acquir Immune Defic Syndr. 22:406–407. 1999.PubMed/NCBI View Article : Google Scholar | |
Hossain MM, Coull JJ, Drusano GL and Margolis DM: Dose proportional inhibition of HIV-1 replication by mycophenolic acid and synergistic inhibition in combination with abacavir, didanosine, and tenofovir. Antiviral Res. 55:41–52. 2002.PubMed/NCBI View Article : Google Scholar | |
Margolis DM, Kewn S, Coull JJ, Ylisastigui L, Turner D, Wise H, Hossain MM, Lanier ER, Shaw LM and Back D: The addition of mycophenolate mofetil to antiretroviral therapy including abacavir is associated with depletion of intracellular deoxyguanosine triphosphate and a decrease in plasma HIV-1 RNA. J Acquir Immune Defic Syndr. 31:45–49. 2002.PubMed/NCBI View Article : Google Scholar | |
Gong ZJ, De Meyer S, Clarysse C, Verslype C, Neyts J, De Clercq E and Yap SH: Mycophenolic acid, an immunosuppressive agent, inhibits HBV replication in vitro. J Viral Hepat. 6:229–236. 1999.PubMed/NCBI View Article : Google Scholar | |
Lau SC, Tse KC, Lai WM and Chiu MC: Use of prophylactic lamivudine and mycophenolate mofetil in renal transplant recipients with chronic hepatitis B infection. Pediatr Transplant. 7:376–380. 2003.PubMed/NCBI View Article : Google Scholar | |
Wang J, Wang B, Huang S, Song Z, Wu J, Zhang E, Zhu Z, Zhu B, Yin Y, Lin Y, et al: Immunosuppressive drugs modulate the replication of hepatitis B virus (HBV) in a hydrodynamic injection mouse model. PLoS One. 9(e85832)2014.PubMed/NCBI View Article : Google Scholar | |
Wu J, Xie HY, Jiang GP, Xu X and Zheng SS: The effect of mycophenolate acid on hepatitis B virus replication in vitro. Hepatobiliary Pancreat Dis Int. 2:410–413. 2003.PubMed/NCBI | |
Ying C, De Clercq E and Neyts J: Ribavirin and mycophenolic acid potentiate the activity of guanine- and diaminopurine-based nucleoside analogues against hepatitis B virus. Antiviral Res. 48:117–124. 2000.PubMed/NCBI View Article : Google Scholar | |
Ying C, Colonno R, De Clercq E and Neyts J: Ribavirin and mycophenolic acid markedly potentiate the anti-hepatitis B virus activity of entecavir. Antiviral Res. 73:192–196. 2007.PubMed/NCBI View Article : Google Scholar | |
Ben-Ari Z, Zemel R and Tur-Kaspa R: The addition of mycophenolate mofetil for suppressing hepatitis B virus replication in liver recipients who developed lamivudine resistance-no beneficial effect. Transplantation. 71:154–156. 2001.PubMed/NCBI View Article : Google Scholar | |
Sayarlioglu H, Erkoc R, Dogan E, Sayarlioglu M and Topal C: Mycophenolate mofetil use in hepatitis B associated-membranous and membranoproliferative glomerulonephritis induces viral replication. Ann Pharmacother. 39(573)2005.PubMed/NCBI View Article : Google Scholar | |
Dong S, Geng L, Shen MD and Zheng SS: Natural killer cell activating receptor NKG2D is involved in the immunosuppressive effects of mycophenolate mofetil and hepatitis B virus infection. Am J Med Sci. 349:432–437. 2015.PubMed/NCBI View Article : Google Scholar | |
Pan Q, van Vuuren AJ, van der Laan LJ, Peppelenbosch MP and Janssen HL: Antiviral or proviral action of mycophenolic acid in hepatitis B infection? Hepatology. 56:1586–1587. 2012.PubMed/NCBI View Article : Google Scholar | |
Hoppe-Seyler K, Sauer P, Lohrey C and Hoppe-Seyler F: The inhibitors of nucleotide biosynthesis leflunomide, FK778, and mycophenolic acid activate hepatitis B virus replication in vitro. Hepatology. 56:9–16. 2012.PubMed/NCBI View Article : Google Scholar | |
Zwerner J and Fiorentino D: Mycophenolate mofetil. Dermatol Ther. 20:229–238. 2007.PubMed/NCBI View Article : Google Scholar | |
Wang XF, Lei Y, Chen M, Chen CB, Ren H and Shi TD: PD-1/PDL1 and CD28/CD80 pathways modulate natural killer T cell function to inhibit hepatitis B virus replication. J Viral Hepat. 20 (Suppl 1):S27–S39. 2013.PubMed/NCBI View Article : Google Scholar | |
Féray C and López-Labrador FX: Is PD-1 blockade a potential therapy for HBV? JHEP Rep. 1:142–144. 2019.PubMed/NCBI View Article : Google Scholar | |
Banga R, Procopio FA, Noto A, Pollakis G, Cavassini M, Ohmiti K, Corpataux JM, de Leval L, Pantaleo G and Perreau M: PD-1(+) and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. Nat Med. 22:754–761. 2016.PubMed/NCBI View Article : Google Scholar | |
Evans VA, van der Sluis RM, Solomon A, Dantanarayana A, McNeil C, Garsia R, Palmer S, Fromentin R, Chomont N, Sékaly RP, et al: Programmed cell death-1 contributes to the establishment and maintenance of HIV-1 latency. AIDS. 32:1491–1497. 2018.PubMed/NCBI View Article : Google Scholar | |
Thibult ML, Mamessier E, Gertner-Dardenne J, Pastor S, Just-Landi S, Xerri L, Chetaille B and Olive D: PD-1 is a novel regulator of human B-cell activation. Int Immunol. 25:129–137. 2013.PubMed/NCBI View Article : Google Scholar | |
Cubas RA, Mudd JC, Savoye AL, Perreau M, van Grevenynghe J, Metcalf T, Connick E, Meditz A, Freeman GJ, Abesada-Terk G Jr, et al: Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat Med. 19:494–499. 2013.PubMed/NCBI View Article : Google Scholar | |
Velu V, Titanji K, Zhu B, Husain S, Pladevega A, Lai L, Vanderford TH, Chennareddi L, Silvestri G, Freeman GJ, et al: Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature. 458:206–210. 2009.PubMed/NCBI View Article : Google Scholar | |
Dyavar Shetty R, Velu V, Titanji K, Bosinger SE, Freeman GJ, Silvestri G and Amara RR: PD-1 blockade during chronic SIV infection reduces hyperimmune activation and microbial translocation in rhesus macaques. J Clin Invest. 122:1712–1716. 2012.PubMed/NCBI View Article : Google Scholar | |
Gane E, Verdon DJ, Brooks AE, Gaggar A, Nguyen AH, Subramanian GM, Schwabe C and Dunbar PR: Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: A pilot study. J Hepatol. 71:900–907. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu J, Zhang E, Ma Z, Wu W, Kosinska A, Zhang X, Möller I, Seiz P, Glebe D, Wang B, et al: Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection. PLoS Pathog. 10(e1003856)2014.PubMed/NCBI View Article : Google Scholar | |
Fromentin R, DaFonseca S, Costiniuk CT, El-Far M, Procopio FA, Hecht FM, Hoh R, Deeks SG, Hazuda DJ, Lewin SR, et al: PD-1 blockade potentiates HIV latency reversal ex vivo in CD4+ T cells from ART-suppressed individuals. Nat Commun. 10(814)2019.PubMed/NCBI View Article : Google Scholar | |
Knolle PA and Thimme R: Hepatic immune regulation and its involvement in viral hepatitis infection. Gastroenterology. 146:1193–1207. 2014.PubMed/NCBI View Article : Google Scholar | |
Lake AC: Hepatitis B reactivation in a long-term nonprogressor due to nivolumab therapy. AIDS. 31:2115–2118. 2017.PubMed/NCBI View Article : Google Scholar | |
Burova E, Hermann A, Waite J, Potocky T, Lai V, Hong S, Liu M, Allbritton O, Woodruff A, Wu Q, et al: Characterization of the anti-PD-1 antibody REGN2810 and its antitumor activity in human PD-1 knock-in mice. Mol Cancer Ther. 16:861–870. 2017.PubMed/NCBI View Article : Google Scholar | |
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov: Safety and Immunotherapeutic Activity of an Anti-PD-1 Antibody (Cemiplimab) in Participants With HIV-1 on Suppressive cART: A Phase I/II, Double-blind, Placebo-controlled, Ascending Multiple Dose Study. urihttps://clinicaltrials.gov/ct2/show/NCT03787095?term=NCT03787095&draw=1&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT03787095?term=NCT03787095&draw=1&rank=1. Accessed, September 9, 2020. | |
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov: Safety and Immunotherapeutic Activity of Cemiplimab in Participants With HBV on Suppressive Antiviral Therapy: A Phase I/II Ascending Multiple Dose Study. urihttps://clinicaltrials.gov/ct2/show/NCT04046107?term=NCT04046107&draw=1&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT04046107?term=NCT04046107&draw=1&rank=1. Accessed, April 13, 2020. | |
Uldrick TS, Gonçalves PH, Abdul-Hay M, Claeys AJ, Emu B, Ernstoff MS, Fling SP, Fong L, Kaiser JC, Lacroix AM, et al: Assessment of the safety of pembrolizumab in patients with HIV and advanced cancer-a phase 1 study. JAMA Oncol. 5:1332–1339. 2019.PubMed/NCBI View Article : Google Scholar | |
Wen X, Wang Y, Ding Y, Li D, Li J, Guo Y, Peng R, Zhao J, Zhang X and Zhang XS: Safety of immune checkpoint inhibitors in Chinese patients with melanoma. Melanoma Res. 26:284–289. 2016.PubMed/NCBI View Article : Google Scholar | |
Pandey A, Ezemenari S, Liaukovich M, Richard I and Boris A: A rare case of pembrolizumab-induced reactivation of hepatitis B. Case Rep Oncol Med. 2018(5985131)2018.PubMed/NCBI View Article : Google Scholar | |
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov: PD-1 Inhibition to Determine CNS Reservoir of HIV-Infection. urihttps://clinicaltrials.gov/ct2/show/NCT03239899?term=NCT03239899&draw=2&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT03239899?term=NCT03239899&draw=2&rank=1. Accessed September 18, 2020. | |
Kothapalli A and Khattak MA: Safety and efficacy of anti-PD-1 therapy for metastatic melanoma and non-small-cell lung cancer in patients with viral hepatitis: A case series. Melanoma Res. 28:155–158. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Zhou Y, Chen C, Fang W, Cai X, Zhang X, Zhao M, Zhang B, Jiang W, Lin Z, et al: Hepatitis B virus reactivation in cancer patients with positive Hepatitis B surface antigen undergoing PD-1 inhibition. J Immunother Cancer. 7(322)2019.PubMed/NCBI View Article : Google Scholar | |
Velu V, Shetty RD, Larsson M and Shankar EM: Role of PD-1 co-inhibitory pathway in HIV infection and potential therapeutic options. Retrovirology. 12(14)2015.PubMed/NCBI View Article : Google Scholar | |
Wykes MN and Lewin SR: Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 18:91–104. 2018.PubMed/NCBI View Article : Google Scholar | |
Goshu BA, Chen H, Moussa M, Cheng J and Catalfamo M: Combination rhIL-15 and anti-PD-L1 (Avelumab) enhances HIVGag-specific CD8 T cell function. J Infect Dis. 222:1540–1549. 2020.PubMed/NCBI View Article : Google Scholar | |
Balzarini J, Holy A, Jindrich J, Naesens L, Snoeck R, Schols D and De Clercq E: Differential antiherpesvirus and antiretrovirus effects of the (S) and (R) enantiomers of acyclic nucleoside phosphonates: Potent and selective in vitro and in vivo antiretrovirus activities of (R)-9-(2-phosphonomethoxypropyl)-2,6-diaminopurine. Antimicrob Agents Chemother. 37:332–338. 1993.PubMed/NCBI View Article : Google Scholar | |
Ray AS, Fordyce MW and Hitchcock MJ: Tenofovir alafenamide: A novel prodrug of tenofovir for the treatment of human immunodeficiency virus. Antiviral Res. 125:63–70. 2016.PubMed/NCBI View Article : Google Scholar | |
Cory TJ, Midde NM, Rao P and Kumar S: Investigational reverse transcriptase inhibitors for the treatment of HIV. Expert Opin Investig Drugs. 24:1219–1228. 2015.PubMed/NCBI View Article : Google Scholar | |
Hostetler KY: Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: Current state of the art. Antiviral Res. 82:A84–A98. 2009.PubMed/NCBI View Article : Google Scholar | |
Lanier ER, Ptak RG, Lampert BM, Keilholz L, Hartman T, Buckheit RW Jr, Mankowski MK, Osterling MC, Almond MR and Painter GR: Development of hexadecyloxypropyl tenofovir (CMX157) for treatment of infection caused by wild-type and nucleoside/nucleotide-resistant HIV. Antimicrob Agents Chemother. 54:2901–2909. 2010.PubMed/NCBI View Article : Google Scholar | |
Painter GR, Almond MR, Trost LC, Lampert BM, Neyts J, De Clercq E, Korba BE, Aldern KA, Beadle JR and Hostetler KY: Evaluation of hexadecyloxypropyl-9-R-[2-(Phosphonomethoxy)propyl]-adenine, CMX157, as a potential treatment for human immunodeficiency virus type 1 and hepatitis B virus infections. Antimicrob Agents Chemother. 51:3505–3509. 2007.PubMed/NCBI View Article : Google Scholar | |
Shire NJ: Cure strategies for hepatitis B virus: The promise of immunotherapy. Clin Pharmacol Drug Dev. 6:186–194. 2017.PubMed/NCBI View Article : Google Scholar | |
Tajiri K and Shimizu Y: New horizon for radical cure of chronic hepatitis B virus infection. World J Hepatol. 8:863–873. 2016.PubMed/NCBI View Article : Google Scholar | |
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov: A Randomized, Double-blind, Placebo-controlled, Single-dose, Dose-escalation Study of the Safety, Tolerability and Pharmacokinetics of CMX157 in Healthy Adult Volunteers. Available from: urihttps://clinicaltrials.gov/ct2/show/NCT01080820?term=NCT01080820&draw=2&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT01080820?term=NCT01080820&draw=2&rank=1. Accessed July 4, 2011. | |
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov [updated September 13, 2017]. A Phase 2, Randomized, Open-label, Ascending, Sequential Dose Group, Multiple Dose Study of the Safety, Tolerability, Pharmacokinetics and Antiviral Activity of CMX157 in HBV-infected Subjects. urihttps://clinicaltrials.gov/ct2/show/NCT02710604?term=NCT02710604&draw=2&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT02710604?term=NCT02710604&draw=2&rank=1. Accessed September 13, 2017. | |
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov: A Phase 1, Randomized, Partial-Blind, Placebo-controlled, Sequential Dose Group, Ascending, Multiple Dose Study of the Safety, Tolerability and Pharmacokinetics, With Food Effect of CMX157 in Healthy Subjects. Available from: urihttps://clinicaltrials.gov/ct2/show/NCT02585440?term=NCT02585440&draw=2&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT02585440?term=NCT02585440&draw=2&rank=1. Accessed February 2, 2017. | |
Allam C: Wraltechwire: ContraVir terminates licensing agreement for Chimerix drug. urihttps://www.wraltechwire.com/2019/04/05/contravir-terminates-licensing-agreement-for-chimerix-drug/simplehttps://www.wraltechwire.com/2019/04/05/contravir-terminates-licensing-agreement-for-chimerix-drug/. Accessed April 5, 2019. | |
Gallay P, Chatterji U, Bobardt MD, Ure D, Trepanier D, Foster R and Ordonez C: Novel cyclophilin inhibitor CPI-431-32 shows broad spectrum antiviral action by blocking replication of HCV, HBV, and HIV-1. J Hepatol. 62 (Suppl 2)(S677)2015. | |
Trepanier DJ, Ure DR and Foster RT: In vitro phase I metabolism of CRV431, a novel oral drug candidate for chronic hepatitis B. Pharmaceutics. 9(51)2017.PubMed/NCBI View Article : Google Scholar | |
Hansson MJ, Moss SJ, Bobardt M, Chatterji U, Coates N, Garcia-Rivera JA, Elmér E, Kendrew S, Leyssen P, Neyts J, et al: Bioengineering and semisynthesis of an optimized cyclophilin inhibitor for treatment of chronic viral infection. Chem Biol. 22:285–292. 2015.PubMed/NCBI View Article : Google Scholar | |
Phillips S, Chokshi S, Chatterji U, Riva A, Bobardt M, Williams R, Gallay P and Naoumov NV: Alisporivir inhibition of hepatocyte cyclophilins reduces HBV replication and hepatitis B surface antigen production. Gastroenterology. 148:403–414.e7. 2015.PubMed/NCBI View Article : Google Scholar | |
Gallay PA, Bobardt MD, Chatterji U, Trepanier DJ, Ure D, Ordonez C and Foster R: The novel cyclophilin inhibitor CPI-431-32 concurrently blocks HCV and HIV-1 infections via a similar mechanism of action. PLoS One. 10(e0134707)2015.PubMed/NCBI View Article : Google Scholar | |
BIOSPACE: ContraVir's Cyclophilin Inhibitor CRV431 Potently Inhibits Essential Pathway In Hepatitis B. urihttps://www.biospace.com/article/releases/contravir-s-cyclophilin-inhibitor-crv431-potently-inhibits-essential-pathway-in-hepatitis-b-/simplehttps://www.biospace.com/article/releases/contravir-s-cyclophilin-inhibitor-crv431-potently-inhibits-essential-pathway-in-hepatitis-b-/. Accessed December 08, 2016. | |
Hardy A: BIOTUESDAYS: Hepion Pharmaceuticals' CEO Robert Foster discusses CRV431's potential in NASH. urihttps://biotuesdays.com/2019/07/30/hepion-pharmaceuticals-ceo-robert-foster-discusses-crv431s-potential-in-nash/simplehttps://biotuesdays.com/2019/07/30/hepion-pharmaceuticals-ceo-robert-foster-discusses-crv431s-potential-in-nash/. Accessed July 30, 2019. | |
Gallay P, Ure D, Bobardt M, Chatterji U, Ou J, Trepanier D and Foster R: The cyclophilin inhibitor CRV431 inhibits liver HBV DNA and HBsAg in transgenic mice. PLoS One. 14(e0217433)2019.PubMed/NCBI View Article : Google Scholar | |
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov: A Randomized, Partially-blinded, Placebo-controlled, Ascending Sequential Dose Groups, Single Dose Study of the Safety, Tolerability and Pharmacokinetics of CRV431, Alone and In Combination With Tenofovir Disoproxil Fumarate in Healthy Subjects, With a Pilot Study of Multiple Ascending Sequential Doses in Healthy Volunteer Subjects. urihttps://clinicaltrials.gov/ct2/show/NCT03596697?term=CRV431&cond=HBV&draw=2&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT03596697?term=CRV431&cond=HBV&draw=2&rank=1. Accessed June 30, 2020. | |
Kuo J, Bobardt M, Chatterji U, Mayo PR, Trepanier DJ, Foster RT, Gallay P and Ure DR: A pan-cyclophilin inhibitor, CRV431, decreases fibrosis and tumor development in chronic liver disease models. J Pharmacol Exp Ther. 371:231–241. 2019.PubMed/NCBI View Article : Google Scholar | |
Wai CT, Chu CJ, Hussain M and Lok AS: HBV genotype B is associated with better response to interferon therapy in HBeAg(+) chronic hepatitis than genotype C. Hepatology. 36:1425–1430. 2002.PubMed/NCBI View Article : Google Scholar | |
Papatheodoridis G, Dimou E and Papadimitropoulos V: Nucleoside analogues for chronic hepatitis B: Antiviral efficacy and viral resistance. Am J Gastroenterol. 97:1618–1628. 2002.PubMed/NCBI View Article : Google Scholar |